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Abstract— This paper proposes an improved version of Artificial 
Bee Colony (ABC) algorithm with mutation based on Levy 
Probability Distributions. The Levy distribution has a peculiar 
property of generating an offspring farther away from its parent 
which depends on internal parameter α compared to that of 
Gaussian mutations, this property enables in finding out most 
optimal solutions to the problems than that of conventional 
methods. The proposed algorithm is tested on 7 standard 
benchmark functions and on a set of non-traditional problems 
suggested in the special session of CEC’2008. Analysis and 
comparison of results with other state of art optimization 
algorithms like GA and PSO, shows the superiority of improved 
mutation, especially on high dimensional problems. This paper 
finally investigates the performance of proposed algorithm on the 
frequency-modulated sound wave synthesis problem, a real world 
problem in the field on communication engineering   

Keywords-artificial bees; levy probability distributions; global 
optimization; 

I.  INTRODUCTION  
Artificial Bee Colony (ABC) is one of the most recent, 

swarm intelligence based algorithms employing the foraging 
behavior of honey bees for solving dynamic numerical 
optimization problems. ABC was suggested by Karaboga and 
Basturk for function optimization [1, 2] in 2005. Due to its 
simplicity and robustness it has been successfully applied to 
various practical optimization problems like Clustering [3]; IIR 
filter design [4]; extraction of MESFET [5] and so on; 
However like most of the population based algorithms, ABC 
also has some non-appreciable drawbacks. As pointed by Zhu 
and Kwong [6], the structure of ABC is such that it supports 
global exploration more in comparison to the exploitation. 
However, the performance of an algorithm depends on both 
exploration and exploitation phases for a required feasible 
solution.  

Various modifications have been suggested in literature to 
improve performance of ABC. Some interesting modifications 
include virtual bee algorithm (or VBA) in which the bees 
moves randomly in the phase space and interact by finding odd 

sources corresponding to the encoded values of the function 
[7]. Sundareswaran et al. proposed an approach based on 
natural behavior of honey bees in nectar collection in which the 
randomly generated worker bees are forced to move in the 
direction of elite bee [8]. Karaboga et al. analyzed the 
performance of ABC based on the parameter tuning [9]. 
Abraham et al. proposed hybrid ABC-DE which combines 
ABC with Differential Evolution [10].  

In this present study an external mutation operator based on 
Levy distribution is embedded into the structure of basic ABC. 
The performance of the proposed algorithm called L-ABC is 
validated on standard benchmarks [11] and also on composite 
functions presented at Congress on Evolutionary Computation 
2008 (CEC’2008) [12]. Finally we investigated the 
performance of proposed scheme on frequency modulated 
sound wave synthesis problem. Levy probability distribution 
has an infinite second moment unlike to that of Gaussian 
distribution. One of the interesting features of Levy Probability 
distributions [11] is its power law in the tail region. The power 
law implies that there is no characteristic length scale and this 
is the mile stone of fractal structure. Further more flexibility in 
levy distribution is that by adjusting the parameterα , with this 
one can tune the probability density, which in turn yields 
adjustable variation in the mutations.  

The rest of paper is organized as follows. In Section II, we 
discuss the basic version of ABC. Section III gives a brief 
overview of levy distribution followed by the proposed Levy 
mutated ABC (L-ABC). Section IV provides detailed 
comparison between the L-ABC and remaining state of art 
optimization methods on a test suite of numerical benchmarks. 
Section V describes an application of the L-ABC to the 
parameter estimation problem for frequency-modulated sound 
wave. Finally we end the paper with some conclusions given in 
Section VI.  

II. ARTIFICIAL BEE COLONY ALGORITHM 
Artificial Bee Colony (ABC) algorithm classifies the 

foraging artificial bees into three groups; the employed bees, 
the onlooker bees and the scouts. The first half of the colony 
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consists of the employed bees and second half consist of the 
onlooker bees. A bee that is currently searching for food or 
exploiting a food source is called an employed bee and a bee 
waiting in the hive for making decision to choose a food source 
is called an onlooker bee. For every food source, there is only 
one employed bee. The employed bee of abandoned food 
source becomes a Scout. In ABC algorithm each solution to the 
problem is considered as food source and is represented by a 
D-dimensional real-valued vector, where the fitness of the 
solution corresponds to the nectar amount of associated food 
source. Like other swarm based algorithms, ABC is also an 
iterative process.  

The algorithm starts by initializing all the employed bees 
with randomly generated food sources (solutions). In each 
generation/iteration every employed bee finds a food source in 
the neighborhood of its current food source and evaluates its 
nectar amount i.e., (fitness). In general the position of thi food 
source, for a D dimensional search space, is represented 
as },....,{ 21 iDiii xxxX = .After the information is shared by 
the employed bees; onlooker bees go to the region of food 
source at iX based on the probability iP  defined as 

∑
=

= FS

k
k

i
i

fit

fitP

1

    (1) 

FS is total number of food sources. Fitness value ifit is 
calculated by using following equation. 

)(1
1

i
i Xf

fit
+

=     (2) 

Here )( iXf is the objective function to be minimized. 

The onlooker finds its food source in the region iX , by making 
use of following equation. 

)(* kjijijnew xxrxx −+=    (3) 

Where ( )FSk ,...,3,2,1∈  such that ik ∉  and 
( )Dj ,...,3,2,1∈  are randomly chosen indexes, r is a uniformly 

distributed random number in the range [-1, 1]. 
If the obtained new fitness value is better than the fitness 

value achieved so far, than the bee moves to this new food 
source leaving this old one otherwise it retains the old food 
source. When all employed bees have completed this process, 
the information is shared with onlookers. Each of the onlookers 
selects a food source according to the probability given above. 
By this scheme good sources are well accommodated with 
onlookers. Each bee will search for a better food source for a 
certain number of cycles (limit), and if the fitness value doesn’t 
improve then that particular bee becomes a Scout bee. A food 
source is initialized to that scout bee randomly and the search 
process continues. In this approach we used basic version 
which involve only one scout bee. 

III. L-ABC: LEVY MUTATED ARTIFICIAL BEE COLONY 
ALGORITHM 

According to Karaboga, ABC has only one control 
parameter ‘limit’ apart from the common control parameters of 

the population-based algorithms such as population size or 
colony size (NB) and maximum generation number or 
maximum cycle number (MCN). The basic version of ABC is 
very powerful in solving Uni-modal and Multimodal functions 
of considerable dimensions. However, the convergence rate 
and quality of solutions deteriorates with the increase in the 
problem complexity.  

As mentioned earlier the basic structure of ABC favors 
exploration more in comparison to exploitation as a result some 
important domain knowledge may get lost during the 
successive iterations. In order to enhance the exploitation 
capabilities of ABC, some added mechanism is needed for 
which we employed Levy mutation (based on Levy probability 
distribution) to assist ABC in exploitation of the search space.  

A. Levy Probability Distribution 
In 1930s, P. Levy, introduced a distribution which gives an 

infinite second moment, unlike finite second moment in 
Gaussian distribution, known as Levy’s Probability 
Distribution [11]. It is also a stable process with an infinite 
moment which provides a characteristic tail at the end. The 
distribution is given as follows.  

∫
∞

−=
0

,  )cos(1)( dqqyeyL qαγ
γα π

  (4) 

From Eqn. (4), we see that the distribution is symmetric 
with respect to y=0 and has two parameters γ andα . γ  is the 
scaling factor satisfying 0>γ and α should satisfy 

20 << α . Considering the limits in particular for 1=α , the 
integration can be analytically performed where it is equivalent 
to Cauchy Probability distributions. For limit 2→α , the 
distribution move towards Gaussian distribution. The 
parameter α controls the shape of the distribution in such a 
way that one can obtain different shapes of probability 
distribution, especially in the tail region.  

The smaller is the parameter α longer is the tail of the 
distribution. Levy distribution provides an ideal probability 
distribution for designing mutation operators because of its 
adjustable parameter. Different α  values define probability 
distributions of various shapes. For example, it can implement 
both Gaussian and Cauchy distributions by simply changing 
the parameterα . The complete mathematical and theoretical 
concepts of Levy Probability distribution can be found in [13].  

B. Levy Mutated Artificial Bee Colony  
The performance of Artificial Bee colony depends on 

exploration and exploitation which is done by the scout and 
employed bees respectively. The main motivation behind 
mutation is to guide the virtual bees towards the global 
optimum within less computational time (fast convergence) 
while maintaining the quality of solutions.  

In order to apply Levy mutation we made use of 
Rechenberg’s 1/5 rule [9], which adapts the mutations step 
size depending on the frequency of successful mutations. This 
rule states that the ratio of successful mutations to all 
mutations should be 1/5; hence if the ratio is greater than 1/5 
the step size increases, and if the ratio is less 1/5 step size 
decreases. However, while performing the experiments we 
observed that the Rechenberg’s ratio can be reduced further in 
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case of ABC algorithm therefore in the present study we have 
taken the ration as 1/10.   

A new food source { }iDiiii xxxxX ,...,,, 321=  by L-ABC is 
generated as follows 

 )0,(, αLxx bestinew +=    (5) 

Here )0,(αL  stands for random number generated by 
Levy’s distribution. The mutation rule is applied making use 
of eq. (5).  

From our experimentations we observed that 1=γ and 
5.1=α  are the most suitable parameters in the current study.  

 
Pseudo codes of ABC and L-ABC 

 
(1) Basic Artificial Bee Colony (ABC) 

Step1.  Initialize the population of 
solutions  ,,...2,1 , FSixij = ,,...2,1 Dj =  0=itrial

itrail  is the non-improvement number  
Step2. Evaluate the population 
Step3. Cycle=1 
Step4. REPEAT 
{----Produce new food source population for employed 
bee-----} 
Step5. For i=1 to FS do 

i. Produce a new food source iv for the 

employed bee of the food source ix by using 
(3) (in case of L-ABC use eq. (5) to evaluate 
the amount of nectar) 

ii. Apply a greedy selection process between 

iv and ix  and select the better one 

iii. If solution ix doesn’t improve 
1+= ii trialtrial , otherwise 0=itrial ;  

End for 
Step6. Calculate the probability values iP  by (4) for 

the solutions using fitness values. 
{---Produce new food source population for 

onlooker bee---} 
i. t=0;  

ii. i=1; 
Step7. REPEAT 

If iPrand <  then 

i. Produce a new food source iv for the 

employed bee of the food source ix by using 
(3) (in case of L-ABC use eq. (5) to evaluate 
the amount of nectar) 

ii. Apply a greedy selection process between 

iv and ix  then  select the better one 

iii. If solution ix doesn’t improve 

1+= ii trialtrial , otherwise 0=itrial ;  
iv. t=t+1 

     End if 
UNTIL (t=FS) 

{--------Determine Scout---------} 
Step8. If max(trial)>limit then 

i. Replace ix  with a new randomly produce 
solution by using following equation 

)(*)1,0( minmaxmin
jjjij xxrandxx −+=  

End If 
ii. Memorize the best solution achieved so far 

    Cycle=Cycle+1; 
UNTIL (Cycle=Maximum Cycle Number) 

 

(2) Levy Mutated Artificial Bee Colony (L-ABC) 

All the algorithmic steps of L-ABC are same as that of 
ABC except that Levy mutation is applied using the modified 
Rechenberg’s rule.  

IV. EXPERIMENTS AND RESULTS OVER BENCHMARK 
FUNCTIONS 

This section presents an extensive comparison among the 
performances of L-ABC algorithm with basic ABC, real coded 
GA, and PSO. We considered a test suite of 7-well known 
benchmark functions of very high complexity and also 3 
functions of nontraditional shifted benchmark problems that are 
suggested in CEC 2008. In Table II dim represents the 
dimension of the problem. We used 100 dimensions for 
functions 1f  to 6f  while function 7f  is 2-D. The rest of the 
functions belong to the class of nontraditional shifted functions 
each function having dimension of 500. Table II summarizes 
the different benchmark functions that are being used in the 
present study.  

A. Parameteric Set up Used for the Alogirthm 
Various parameters employed for the ABC and also for     

L-ABC algorithms are summarized in Table I. There is not 
much difference in the parametric set up of both the algorithms 
except for the scaling parameter. The obtained values of test 
functions for 30 independent runs are recorded in Table III.   

Table I Parameter Settings of ABC and L-ABC 
 

Parameter Value 
No of Bees (NB) 20 (for 100-D problems), 

50 ( for 500-D problems) 
Food Sources (FS) NB/2 
Employed bees  50% of bees 
Onlooker bees 50% of bees 
Scout bees 1 
Limit Dne *  
Scale Parameter  1.5 

D – dimension of the problem 

B. Empircal Results  
Table III and IVcompares the basic version of ABC and 

proposed L-ABC on the quality of best soulutions obtained. 
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The mean and standard deviation of the best-of-run 30 
independent runs are presented in Table III and Table IV for 7 
traditional benchmarks and 3 nontraditional shifted functions 
respectively. The proposed algorithm is also compared with 
Genetic Algorithm (GA) and Particle Swarm Optimization 
(PSO) tehniques [14] for the 100-Dimensional functions and 
on the other hand for 500-Dimensional shifted functions we 
compared the performance of L-ABC with one of the variants 
of Differential Evolution called Differential Evolution with 
Self-adpation and Cooperative Co-evolution (DEwSACc) [15] 
and with a variant of PSO called Improved Particle Swarm 
Optimizer. (EPUS-PSO) [16].  

Tables V and VI shows the best values obtained by 
different algorithms used for comparison purpose. The 

convergence characteristics of functions from 1f  to 10f  are 
provided from Fig 1 to Fig 10. Each graph shows how the 
objective function value of best in a pupulation changes with 
increasing number of FEs. A termination criterion of 1,00,000 
FEs are used for 1f  to 7f  and that of 10,00,000 FE’s are used 
for 8f  to 10f . From the results it is very clear that L-ABC 
out performed all the algorithms with a promising solutions 
and DEwSACc algorithm remained a strong competitor for the 
L-ABC and which showed a good optimal solution for 

11f function but according to overall comparisons and 
simulations it is clear that L-ABC is superior to that of 
remaining methods. 

 

 
 

Table II Description of the Benchmark Functions 
 

Function Mathematical Representation Dim 
(D) 

Range of 
Search (S) 

Theoretical 
Optima 

Sphere  
∑

=

=
D

i
ixxf

1

2
1 )(  

100 D)100,100(−  0)0(1 =f  

Rosenbrock 
∑

−

=
+ −+−=

1

1

222
12 ])1()(100[)(

D

i
iii xxxxf  100 D)100,100(−  0)1(2 =f  
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∑

−

=

+−=
1

1

2
3 ]10)2cos(10[)(

D

i
ii xxxf π  

100 D)12.5 ,12.5(−
 

0)0(3 =f  

Grienwank 
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i
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5
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100 D)32 ,32(−  0)0(5 =f  

Schwefel ( )∑
=

−=
n

i
ii xxnxf

1
6 sinx9829.418)(  100 D)500 ,500(−

 
0)97.420(6 =f

 
Easom ( ) [ ]2

2
2

1217 )()(exp)cos()cos( ππ −−−−−= xxxxxf  2 )2 ,2(−  0),(7 =ππf  

Shifted 
Sphere 

Uni-modal, separable, scalable 500 D)100,100(−  08 =f  

Shifted 
Rastrigin’s 

Multi-modal, separable, huge number of local minima 500 D)5 ,5(−  09 =f  

Shifted 
Ackley’s 

Multi-Modal, Separable 500 D)32 ,32(−  010 =f  
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Table III Comparison of ABC and L-ABC in terms of Error, Standard Deviation and Fitness on traditional benchmarks 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Table IV Comparison of ABC and L-ABC in terms of Error, Standard Deviation and Fitness on shifted benchmarks 

 

 
 
 
 

Table V Comparison of GA, PSO, ABC and L-ABC in terms of fitness value over traditional benchmark functions 

 
 
 
 
 
 
 
 
 

Table VI Comparison of ABC, L-ABC with variants of PSO and DE over shifted benchmark functions 
 

 
 

 

Fun. Fitness Error Standard Deviation 
ABC L-ABC ABC L-ABC ABC L-ABC 

1f  7.8484E-007 2.6525E-015 4.16757E-006 4.32139E-015 4.55706E-006 1.92793E-015 

2f  1.31556E+002 1.13602E+00 2.36941E+002 2.15423E+01 1.11458E+002 2.32314E+01 

3f  8.74222E+00 4.946514E-10 1.56381E+001 1.03091E+00 3.23844E+00 9.72414E-001 

4f  4.046268E-006 1.22124E-015 5.03246E-003 4.96649E-004 9.15662E-003 2.47141E-003 

5f  8.094955E-003 2.41465E-008 2.96985E-002 1.09411E-007 2.64681E-002 1.40843E-007 

6f  2.167262E+003 6.04417E+002 3.19633E+003 1.19866E+003 3.79350E+002 3.28309E+002 

7f  0 0 8.65942E-002 7.40149E-018 4.64696E-004 2.81673E-017 

Fun. Fitness Error Standard Deviation 
ABC L-ABC ABC L-ABC ABC L-ABC 

8f  5.6776E-007 6.8157E-013 9.3558E-006 7.77029E-012 1.87417E-005 9.42605-012 

9f  7.73042E+01 6.9914E+00 1.10386E+02 1.41583E+01 1.20619E+01 4.02303E+00 

10f  2.94500E-01 6.5574E-006 5.85487E-01 2.25793E-005 1.58059E-01 1.211804E-005 

               Algorithm 
 
Function 

GA PSO ABC L-ABC 

Sphere 5.650E+01 2.2121E+02 7.8484E-007 2.6525E-015 
Rosenbrock 1.1182E+02 1.05E+05 1.31556E+002 1.13602E+00 
Rastrigin 3.335E+002 6.4257E+02 8.74222E+00 4.946514E-10 
Ackley 4.333E+00 6.01E+00 8.094955E-003 2.41465E-008 

              Algorithm 
Function 

DEwSAcc EPUS-PSO ABC L-ABC 

Shifted Sphere 5.5194E-11 6.91E+001 5.6776E-007 6.8157E-013 
Shifted Rastrigin 2.8699E+002 3.27E+03 7.73042E+01 6.9914E+00 
Shifted Ackley 7.0973E-07 5.66E+00 2.94500E-01 6.5574E-006 
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Fig 1 Convergence plot of Sphere Function 
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Fig 2 Convergence plot of Rosenbrock Function 
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Fig 3 Convergence plot of Rastrigin Function 
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Fig 4 Convergence plot of Grienwank Function 
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Fig 5 Convergence plot of Ackley Function 
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Fig 6 Convergence Plot of Schwefel Function 
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Fig 7 Convergence plot of Easom Problem 
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Fig 8 Convergence plot of Shifted Sphere Function 
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Fig 9 Convergence plot of Shifted Rastrigin Function 
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Fig 10 Convergence plot of Shifted Ackley Function 

 

V. APPLICATION TO PARAMETER ESTIMATION FOR 
FREQUENCY-MODUALTED (FM) SOUND WAVES 

Frequency-modulate (FM) sound synthesis plays a vital 
role in several modern musical applications. In this section  
the proposed L-ABC is used to optimize the parameters of an 
FM synthesizer. Genetic algorithms are being used for the 
FM synthesizer in past [17 18]. Here, the system is designed 
in such a way that it can automatically generate sounds 
similar to the target sounds. The target sound is a .wav file. 
The L-ABC initializes a set of parameters, and the FM 
synthesizer generates the corresponding sounds. In the 
feature extraction step, the dissimilarities of features between 
the target sound and synthesized sounds are used to compute 
the fitness value. This process repeats until the synthesized 
sounds become very similar to the target.  

The problem involves determination of six real 

parameters { }332211 ,,,, ωωω aaaX = of the FM sound 
wave given by (6) for approximating it to the sound wave 
given in (7) where 100/2πθ = . The parameters are 
defined in the range [-6.4, +6.35] 

( )( )( )θωθωθω ..sin...sin...sin.)( 332211 tatataty ++=   (6) 

 

( )( )( )θθθ ..9.4sin.2.8.4sin5.1..5sin0.1)(0 tttty +−=       (7) 

The objective is to minimize the sum of square errors 
given by (8). This problem is a highly complex multimodal 
function having strong epistasis (interrelation among the 
variables), with the optimum value of 0.0.  

( ) ( )∑
=

−=
100

0

2
0 )()(

t
tytyXf    (8) 

Figure 13 shows the convergence of the Frequency 
Modulate sound synthesis function. The L-ABC had 
outperformed the ABC because of its improved mutation 
strategy. To perform this application we had considered the 
algorithmic parameters that of Table II and the population of 
artificial bee was set to 20. A termination criterion of 
1,00,000 Functional Evaluations was used for this problem.  

Table VII. Fitness values obtained by ABC and L-ABC 
 

ABC  L-ABC 

Fitness 2.0456 5.7595e-005
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Fig 11 Progress towards the optimum solution for the frequency 

modulator synthesis Problem 
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Fig 12 Actual target sound and the waveform synthesized by L-ABC 

 
Table VII indicate the superior performance of L-ABC 

over basic ABC in terms of final accuracy and convergence 
speed from Fig. 11. Also Fig 12 shows that the waveform 
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estimated by L-ABC achieves a high level of 
correspondence with the actual FM sound wave  

VI. CONCLUSIONS 
Artificial Bee Colony Algorithm with Levy mutation 

was formulated and its performance assessment was given 
for the 7-high dimensional test functions and 3-high 
dimensional shifted test functions proposed for the special 
session of Large Scale Global Optimization at 2008 IEEE 
World Congress on Computational Intelligence. The 
presence of Levy probability distribution in the basic 
structure of ABC increases its efficiency without imposing 
much burden on its rate of convergence. L-ABC showed 
better results than its classical counterpart for all of the 
tested problems. Further, the mutation scheme outperformed 
a state of the art variant of PSO, GA and also variants of DE 
in solving high dimensional functions.  

Future research may focus on extending L-ABC for 
solving constrained optimization problems and modifying it 
suitably for multiobjective optimization problems. Also 
instead of using Rechenberg’s rule of mutation, we can 
apply it adaptively. 
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