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Abstract. Population based metaheuristics are commonly used foablgitimization problems.
These techniques depend largely on the generation oflipitjpulation. A good initial population
may not only result in a better fitness function value but miag aelp in faster convergence. Al-
though these technigues have been popular since more ttendbcades very little research has
been done on the initialization of the population. In thip@a we propose a modified Particle
Swarm Optimization (PSO) called Improved Constraint BertSwarm Optimization (ICPSO) al-
gorithm for solving constrained optimization. The propb$€PSO algorithm is initialized using
guasi random Vander Corput sequence and differs from utreamsd PSO algorithm in the phase
of updating the position vectors and sorting every genemagolutions. The performance of ICPSO
algorithm is validated on eighteen constrained benchmesklpms. The numerical results show
that the proposed algorithm is a quite promising for soldngstraint optimization problems.
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1. Introduction

Most of the problems occurring in the field technology andiesgring can be formulated as global
optimization problems. Mathematical models of such pnuisiés often complex. The objective function
may be multimodal having several local and global optimanigal-world optimization problems are
solved subject to sets of constraints. Such problems dezlganstrained optimization problems (COP).
The search space in COPs consists of two kinds of solutieasilfle and infeasible. Feasible points
satisfy all the constraints, while infeasible points vielat least one of them. Therefore, the final solution
of an optimization problem must satisfy all constraints. dkstrained optimization problem may be
distinguished as a Linear Programming Problem (LPP) andihgar Programming Problem (NLP). In
this paper we have considered NLP problems where eithebjketive function or the constraints or both
are nonlinear in nature. There are many traditional metiotise literature for solving NLP. However,
most of the traditional methods require certain auxiliamyperties (like convexity, continuity etc.) of the
problem and also most of the traditional techniques aralskgitfor only a particular type of problem (for
example Quadratic Programming Problems, Geometric Pmogiag Problems etc). Keeping in view
the limitations of traditional techniques researchersehproposed the use of stochastic optimization
methods and intelligent algorithms for solving NLP whichyniee constrained or unconstrained. Based
on the research efforts in literature, constraint handiireghods have been categorized in a number of
classes [2, 3, 4, 5].

In the past few decades researchers have shown signifidenéshin population based stochas-
tic search techniques for dealing with global optimizatimoblems. Some popular population based
metaheuristics include Genetic Algorithms [6, 7, 8], Ani@ty Optimization [9], Particle Swarm Opti-
mization [10], Differential Evolution [11] etcetera. Thedfi step in all these algorithms‘igenerate an
initial population”; but how the population is to be generated finds little or natioe.

The initial generation of random numbers plays an importat in the population based search
techniques for optimization. The uniform distribution afipts in the search domain is very likely to
improve the performance of a search technique that depargidy on the generation of random number
numbers. Now the question arises which method should betaggzherate random numbers which will
result in faster convergence of the algorithm without capnising with the quality of solution. The most
commonly used method for generating the initial populaisdhe use of an inbuilt subroutine available in
most of the programming languages for generating randornbetsn Though this method is very simple
from the programming point of view, it is not very efficientdaeise the computer generated numbers do
not cover the search space uniformly. Despite the relevahdistribution of initial population this topic
has not gained much attention in the EA community.

In the present study we have made use of quasi random Vandput®®quence to initialize the
population. Some previous instances where low discrepaagyences have been used to improve the
performance of optimization algorithms include [12, 13, 18, 16]. Kimura and Matsumura [12] have
used Halton sequence for initializing the Genetic Algarith(GA) population and have shown that a
real coded GA performs much better when initialized with agjuandom sequence in comparison to a
GA which initialized with a population having uniform prdiity distribution. Instances where gquasi
random sequences have been used for initializing the swaR8O can be found in [13, 14, 15, 16]. In
[14, 15, 16] authors have made use of Sobol and Faure segueBtailarly, Nguyen et al. [13] have
shown a detailed comparison of Halton Faure and Sobol seqadar initializing the swarm. In the pre-
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vious studies, it has already been shown that the perforenah8obol sequence dominates the perfor-
mance of Halton and Faure sequences.

The authors suggested the use of quasi random sequencée fimitial generation of population
in PSO and recoded its performance for unconstrained gmtion. In [17], the authors used Vander
Corput sequence and Sobol sequence for the initial gearratirandom numbers in the basic PSO and
compared its performance with the PSO in which computer rgéee random numbers were used for
initial population. The numerical results showed that threppsed quasi random sequences significantly
improve the performance of basic PSO. Encouraged by théomsrsnade for solving unconstrained
optimization problems in [17], in this paper the authorspmge the use of quasi random Vander Corput
sequence for solving constrained optimization problems.

This paper presents an Improved Constraint Particle Swaptimization (ICPSO) algorithm for
solving constrained optimization problems. Its initialppdation is generated using Vander Corput se-
guence and its constraint solving approach is similar toajhygroach used by K. Zielinski et al. [18]
where a personal or neighborhood best solugiém substituted by a new solutiahif:

e Both vectors are feasible, batyield the smaller objective function value.
e 7 is feasible and is not.
e Both vectors are infeasible, batresults in the lower sum of constraint violations.

The proposed ICPSO is different from the algorithm propardd8], as the swarm is initialized by
Low discrepancy Vander Corput Sequence and above rulegppliecduring the updating of position
vectors. In the present study we have concentrated our woB&® which is relatively a new member to
a class of population based search technique. To the best kiowledge, no results are available on the
performance of low discrepancy sequence for solving caim&td optimization problems. Moreover, the
proposed concept may be applied to any of the populatiordissessech technique for solving constrained
optimization problems.

The structure of the paper is as follows: in Section 2, we gilmief definition of low discrepancy
sequences and Vander Corput sequence. In Section 3, wdremaParticle Swarm Optimization
Algorithm, in Section 4, the proposed ICPSO algorithm isegiv Section 5 deals with experimental
settings and test problems, Section 6 gives the numerisaltseand discussion and finally the paper
conclude with Section 7.

2. Quasi Random Vander Corput Sequence

2.1. Low discrepancy or Quasi Random Sequences

The most common practice of generating random numbers isrtheising an inbuilt subroutine (avail-
able in most of the programming languages), which uses anmiprobability distribution to generate
random numbers. This method is not very proficient as it has lshown that uniform pseudorandom
number sequences have discrepancy of afidglog V))'/? and thus do not achieve the lowest possible
discrepancy. Subsequently, researchers have proposdttarative way of generating ‘quasirandom’
numbers through the use of low discrepancy sequences. dieeiepancies have been shown to be op-
timal, of order(log N)*/N [19], [20]. Quasirandom sequences, on the other hand are osaful for
global optimization, because of the variation of random hera that are produced in each iteration.
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Many of the relevant low discrepancy sequences are linkdtkbtvan der Corput sequence introduced
initially for dimensions = 1 and baseé = 2 [21]. The Van der Corput discovery inspired other quasi
random sequences like Halton [22], Faure, Sobol [23, 2d],lébwever, it has been reported that Halton
and Faure sequences do not work too well when the search bpadarge dimensions. Keeping this
fact in mind we decided to scrutinize the performance of PStguVan der Corput sequence along
with Sobol sequence (which is said be superior than otherdisarepancy sequences according to the
previous studies) for swarm initialization and tested tHemsolving global optimization problems in
large dimension search spaces.

2.2. Van der Corput Sequence

A Van der Corput sequence is a low-discrepancy sequencelmemnit interval first published in 1935
by the Dutch mathematician J. G. Van der Corput. It is a didifal)-sequence, which exists for all
based > 2. Itis defined by theadical inverse functionp;, : Ny — [0,1). If n € Ny has theb-adic
expansion

n= i ajbj*1 Q)
=0
with a; € {0,...,b— 1}, andT" = |log, n] thenyy, is defined as
T
po(n) = > e
=0

In other words, theith b-adic digit of n becomes thgth b-adic digit of ¢,(n) behind the decimal
point. The Van der Corput sequence in bagethen defined a§p;(n)),>0.

The elements of the Van der Corput sequence (in any base)datense set in the unit interval:
for any real number if0, 1] there exists a sub sequence of the Van der Corput sequencam®iivarges
towards that number. They are also uniformly distributedrdtae unit interval. Figures 2 and 3 depict
the initial 500 points generated by using the inbuilt sukiriand by using Vander Corput sequence
respectively. The figures clearly show that the initial peigenerated by using quasi random sequences
cover the search space more evenly in comparison to the @gsandom numbers generated by using
computer subroutine. The distribution of sample pointspace using computer generated pseudo ran-
dom numbers and sample points generated using quasi ranaderMCorput sequence are shown in Fig
1 and 2 respectively. From these figures it can be easily $e¢nhe sample points generated by quasi
random sequence are far more uniformly distributed in coiepa to the computer generated pseudo
random sample points generated by using inbuilt subroutine

3. Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) is a relatively neweritold to a class of population based search
technique for solving numerical optimization problemss mtechanism is inspired from the complex
social behavior shown by the natural species like flock afdyischool of fish and even crowd of human
beings. The particles or members of the swarm fly through didimkensional search space looking for
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a potential solution. Each particle adjusts its positiothinsearch space from time to time as per its own
experience and also as per the position of its neighborsoftaagues).

For aD-dimensional search space the position ofithgarticle is represented 85 = (z;1, 42, - . -,
x;p). Each particle maintains a memory of its previous best osiP;, = (p;1,pi2,...,pip) and a
velocity V; = (vi1,vi2, ..., v;p) @along each dimension. At each iteration, tRevector of the particle
with best fitness in the local neighborhood, designatednd theP vector of the current particle are
combined to adjust the velocity along each dimension andrapusition of the particle is determined
using that velocity. The two basic equations which goveewtorking of PSO are that of velocity vector
and position vector are given by:

Via = wid + c1r1(Pid — Tid) + c2r2(Pgd — Tid) )

Tig = Tid+ Vid 4)
The first part of equation (3) represents the inertia of thevipus velocity, the second part is the
cognition part and it tells us about the personal thinkinghef particle, the third part represents the
cooperation among particles and is therefore named as¢iad somponent [25]. Acceleration constants

c1, ¢o [26] and inertia weightv [27] are predefined by the user and r, are the uniformly generated
random numbers in the range [6f 1].

4. Proposed |CPSO Algorithm

The proposed algorithm ICPSO is a simple algorithm for sgvionstraint optimization problems, it
is easy to implement. It is initialized using Vander Corpetjgence and it differs from unconstrained
PSO in the phase of updating the position vectors and sogtingy generation solutions. The proposed
ICPSO algorithm uses the low discrepancy Vander Corput &exgufor initializing the population and
uses the following three selection criteria after calénotathe new particle

1. If the new particle and the previous patrticle are feadidm select the best one
2. If both the particles are infeasible then select the onengasmaller constraint violation
3. If one is feasible and the other one is infeasible thercttie feasible one.

Also at the end of every iteration, the particles are sorgedding the three criteria:

1. Sort feasible solutions in front of infeasible solutions
2. Sort feasible solutions according to their fithess funrctialues
3. Sort infeasible solutions according to their constraiatations.

The computational steps of ICPSO algorithm is given Aldwnit4:

5. Benchmark problems, Experimental Settings

5.1. Benchmark problems

The general NLP is given by nonlinear objective functigrwhich is to be minimized/maximized with
respect to the design variables= (x4, xo, .. ., x,,) and the nonlinear inequality and equality constraints.
The mathematical models of the problems considered in therge of the type:
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Algorithm 1 ICPSO Algorithm

Step 1 Initialize the population (X;) using low discrepancy Vander
Corput Sequence
Step 2 For all particles
Evaluate the objective function
Calculate the constraint violation
End for
Step 3 While stopping criterion is not satisfied
Do
w linearly decreases from 0.9 to 0.4
For all particles
Calculate velocity vector using eqn (3)
Calculate a new particle (NX) using eqn (4)
i.e. NX = X;t + vttt
If (NX and X;! are feasible) Then
If (f(NX) < £(X;!) Then X;/t! = NX
Else X/l = X!
End if
End if
If (NX and X;! are infeasible) Then
If (constraint violate(NX) < constraint violate(X;)
Then X;/T! = NX
Else X;//t! = x;?
End if
End if
If (NX is feasible and Xf is infeasible)
Then X;'t! = NX
Else X;/T1 = X
End if
If (£xhH < £(pih)) pitt = x,tH
If (£(PT1) < £(Pgl)) Pgitl = p;tt!
End if
End if
End for
Sort the particles using the three sorting rules
Go to next generation
Step 4 End while
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Minimize/Maximizef (z)

Subiject to:
gi(x) < 0,j=1,...,p 5)
Timin < T < Timax (¢ = 1,...,n), wherep and g are the number of inequality and equality

constraints respectively.

A set of 18 constrained benchmark problems is considered to evalhatpdrformance of the pro-
posed ICPSO. All the problems are nonlinear in nature itheethe objective function or the constraints
or both have a nonlinear term in it. The mathematical modetke problems along with the optimal
solution are given in Appendix A.

5.2. Experimental settings

A total of 25 runs for each experimental setting are conducted and tmageéitness of the best solutions
throughout the run is recorded. The population size is taedif. A linearly decreasing inertia weight
is used which starts &9 and ends af.4, with the user defined parameteris= c; = 2.0 andry, o

as uniformly distributed random numbers betwéemd1. The proposed ICPSO algorithm is compared
with two more variations of PSO.

6. Comparison Criteria, Results and Discussion

6.1. Comparison Criteria

We used several criteria to measure the performance of tipwped ICPSO algorithm and to compare it
with other versions of PSO. In Tables 1 — 4, we recorded thimgeance the proposed ICPSO in terms
of best worst and average fitness function value along witstAndard deviation (Std) while increasing
the NFE (number of function evaluations) to three diffenaitiess x 103, 5 x 104, 5 x 10°.

In Tables 5 and 6, the performance of ICPSO is compared wittotiver variants of PSO for solving
constrained optimization problems. The comparison daiten all the algorithms taken in the present
study are given as:

Feasible Run: A run during which at least one feasible solution is foundi/iax NFE.

Successful Run: A run during which the algorithm finds a feasible solutiosatisfying

(f(z) — f(z*)) < 0.0001.

Feasible Rate = (# of feasible runs) / total runs

Success Rate = (# of successful runs) / total runs

Success Performance = mean (FEs for successful rungk (# of total runs) / (# of successful runs)

6.2. Resultsand Discussion

From Tables 1 — 4, we can see that the performance of the dpG$ SO improves with the increase
in the number of function evaluations. This is quite an eige@ut come. However it can be seen
that5 x 10* NFE is sufficient for reaching a good optimum solution whiigls in the vicinity of the true
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Table 1. Fitness function values achieved WéAE = 5 x 103, NFE =5 x 10* andNFE = 5 x 10° for
problems f01 — f05
FES fo1 f02 f03 f04 fo5
Best -12.7810 | 0.412234 | -0.5123 | -30665.5314| 5126.2298
5 10° Worst | -10.3994 | 0.354648 | -0.2144 | -30665.3480| 5189.3433
Mean | -11.3257 | 0.363072 | -0.4231 | -30665.3712| 5165.7069
Std 0.77603 | 0.021727 | 0.0393 0.228162 56.177
Best -15 0.803138 | -0.7181 | -30665.5386| 5126.4967
5 x 10° Worst | -15 0.784856 | -0.3990 | -30665.5386| 5126.4967
Mean | -15 0.793258 | -0.6495 | -30665.5386| 5126.4967
Std 9.3e-09 0.00976 0.1294 1.02e-12 5.53e-05
Best -15 0.803618 | -0.8324 | -30665.5386| 5126.4967
5 10 Worst | -15 0.794661 | -0.4751 | -30665.5386| 5126.4967
Mean | -15 0.803113 | -0.7563 | -30665.5386| 5126.4967
Std 1.5e-11 0.009781 | 0.0245 0.0000 2.40e-12
Table 2. Fitness function values achieved WeRE = 5 x 103, NFE =5 x 10* and NFE = 5 x 10° for
problems f06 — f10
NFE f06 fo7 fo8 f09 f10
Best | -6961.8127| 25.5805 | -0.095826 | 680.6481 | 8207.3551
5 % 10° Worst | -6939.9306 | 28.9778 | -0.095826 | 681.1337 | 8399.2033
Mean | -6958.7191| 27.6499 | -0.095826 | 680.7835 | 8344.4623
Std 10.1347 0.9488 2.77e-18 0.1498 2.734
Best | -6961.8138| 24.3062 | -0.095826 | 680.6303 | 7049.2533
5 x 10" Worst | -6961.8138 | 24.3118 | -0.095826 | 681.0767 | 7049.2738
Mean | -6961.8138| 24.4006 | -0.095826 | 680.6683 | 7049.2697
Std 9.09e-13 | 0.01911 4.80e-19 | 0.089227 0.01456
Best | -6961.8138| 24.3062 | -0.095826 | 680.6301 | 7049.2480
5 10 Worst | -6961.8138 | 24.3246 | -0.095826 | 680.6435 | 7049.2480
Mean | -6961.8138| 24.3073 | -0.095826 | 680.6329 | 7049.2480
Std 1.98e-15| 0.00402 0.0000 0.0525 1.81e-13
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Table 3. Fitness function values achieved WARE = 5 x 103, NFE = 5 x 10* andNFE = 5 x 10° for
problems f11 — 15

NFE f11 f12 f13 f14 f15
Best 0.7499 -1 0.4923 -44.4379 | 961.7302
5% 10° Worst | 0.8539 -1 0.9997 -39.8987 | 962.0497
Mean | 0.8102 -1 0.8807 -42.1293 | 961.7565
Std 0.0733 0.0000 | 0.1940 1.3022 1.9369
Best 0.7499 -1 0.3212 -47.6380 | 961.7150
5 10! Worst | 0.7499 -1 0.6389 -45.7222 | 962.6006
Mean | 0.7499 -1 0.4783 -46.2218 | 962.2491
Std 2.22e-16 | 0.0000 | 0.1067 1.0495 0.8847
Best 0.7499 -1 0.0531 -47.7648 | 961.7150
5% 10 Worst | 0.7499 -1 0.434 -47.7648 | 961.7150
Mean | 0.7499 -1 0.32736 -47.7648 | 961.7150
Std 2.22e-16 | 0.0000 | 0.171017 | 4.71e-15 | 4.42e-13

Table 4. Fitness function values achieved WARE = 5 x 103, NFE = 5 x 10* andNFE = 5 x 10° for
problems 16 — f18

NFE f16 f17 f18
Best -1.9015 8967.5800 | -0.6485
5% 10 Worst | -1.8991 11028.714 | -0.4833
Mean | -1.9001 9311.915 -0.5261
Std 0.00251 | 7.618 0.05928
Best -1.9051 8868.7455 | -0.8657
5 x 10t Worst | -1.9051 10903.986 | -0.8644
Mean | -1.9051 9070.5204 | -0.8650
Std 7.90e-16 | 4.8995 0.00066
Best -1.9051 8853.5338 | -0.8660
5% 10 Worst | -1.9051 8853.5338 | -0.8660
Mean | -1.9051 8853.5338 | -0.8660
Std 8.05e-17 | 1.00e-12 1.06e-16
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Table 5. Comparison Results: NFE to achieve the fixed acglesel ((f(z) — f(z*)) < 0.0001), success rate,
Feasible Rate and Success Performance for problems f01 — f10

Problem | Algo Best Worst Mean Feasible | Success | Success
Rate (%) | Rate (%) | Perf.

ICPSO | 25250 55250 29796 100 100 29796

fol [17] 25273 346801 | 76195 100 52 146530
[27] 95100 106900 | 101532 | 100 100 101532
ICPSO | 81800 135750 | 115850 | 100 100 115850

f02 [17] - - - 100 0 -
[27] 180000 | 327900 | 231193 | 100 56 412844.3878
ICPSO | - - - 100 0 -

f03 [17] - - - 100 0 -
[27] 450100 | 454000 | 450644 | 100 100 450644
ICPSO | 7750 12650 9568 100 100 9568

f04 [17] 15363 25776 20546 100 100 20546
[27] 74300 85000 79876 100 100 79876
ICPSO | 13350 65400 19286 100 100 19286

f05 [17] 94156 482411 | 364218 | 100 16 2276363
[27] 450100 | 457200 | 452256 | 100 100 452256
ICPSO | 7300 9600 8252 100 100 8252

f06 [17] 16794 22274 20043 100 100 20043
[27] 47800 61100 56508 100 100 56508
ICPSO | 29050 57800 40046 100 100 40046

fo7 [17] 315906 | 338659 | 327283 | 100 8 4091031
[27] 198600 | 444100 | 352592 | 100 96 367282.9861
ICPSO | 1050 1350 1158 100 100 1158

f08 [17] 1395 3921 2360 100 100 2360
[27] 2800 8400 6124 100 100 6124
ICPSO | 10450 29550 16248 100 100 16248

f09 [17] 45342 84152 58129 100 100 58129
[27] 77000 129000 | 97544 100 100 97544
ICPSO | 66050 84900 75920 100 100 75920

f010 [17] 290367 | 486655 | 426560 | 100 32 1332999
[27] 398000 | 475600 | 452575 | 100 16 2828593.75
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Table 6. Comparison Results: NFE to achieve the fixed acglesel ((f(z) — f(z*)) < 0.0001), success rate,
Feasible Rate and Success Performance for problems f11 — f18

Problem | Algo Best Worst Mean Feasible | Success | Success
Problem | Algo Best Worst Mean Rate (%) | Rate (%) | Perf.
ICPSO | 1650 24250 13630 100 100 13630
f11 [17] 5475 21795 16386 100 100 16386
[27] 450100 | 450100 | 450100 | 100 100 450100
ICPSO | 850 1100 976 100 100 976
f12 [17] 1409 9289 4893 100 100 4893
[27] 3300 10900 8088 100 100 8088
ICPSO | 88700 111100 | 102512 | 100 16 640700
f13 [17] - - - 100 0 -
[27] 450100 | 453200 | 450420 | 100 100 450420
ICPSO | 21250 339550 | 50614 100 100 50614
f14 [17] - - - 100 0 -
[27] - - - 100 0 -
ICPSO | 7400 128100 | 54306 100 100 54306
f15 [17] 17857 348138 | 176827 | 100 80 221033
[27] 450100 | 450100 | 450100 | 100 100 450100
ICPSO | 7100 10650 8732 100 100 8732
f16 [17] 24907 51924 33335 100 100 33335
[27] 43400 53900 49040 100 100 49040
ICPSO | 256800 | 463350 | 408506 | 96 72 567369
f17 [17] - - - 100 0 -
[27] - - - 100 0 -
ICPSO | 53600 89900 71694 100 100 71694
f18 [17] 85571 455907 | 191220 | 100 80 239026
[27] 120800 | 394900 | 214322 | 100 92 232958.4121

optimum value, under the present parameter settings. Msaan see that except for problem number
5 (g05), where the standard deviation (std) is 56.177, thdastall the remaining problems is quite
low. This shows the consistency of the proposed ICPSO afgoriThe superior performance of ICPSO
is more visible from Tables 5 and 6 where the results are decbafter fixing the accuracy at 0.0001.
In these tables we can see that the proposed ICPSO gave advedtepar performance with the other
two algorithms. We will now take the comparison criteria dryeone and discuss them briefly. The
first criterion is that of a feasible run. A run is said to besibk if at least one feasible solution is
obtained in maximum number of function evaluations. Acaaydo this criterion all the algorithm
gave 100% feasible rate for all the test problems except @CRBich gave 96% feasible rate for test
problem f17. However, if we observe the second criterioncivh$ of successful run and is recorded
when the algorithm finds a feasible solution satisfying thveg accuracy (=0.0001) it can be seen that
the proposed ICPSO outperforms the other algorithms irhalltést cases including f17. In f17, the
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percentage of success rate for ICPSO is 72, whereas the agwithms were not able to reach the
prescribed accuracy in any of the run. The third criteriorthist of the success performance which
depends on the feasibility rate and success rate, as deddribthe previous subsection. Here also
ICPSO gave a better performance in comparison to the ottwealyorithms taken for comparison.

7. Conclusion

In the present study a low discrepancy Vander Corput seguigit@lized particle swarm optimization
called ICPSO is proposed for solving constrained optinorzat Besides the initialization process, the
proposed algorithm differs from the basic PSO in the updabifposition vectors and sorting of every
generation solutions. The proposed technique for solvimgsitained optimization problems, though
used for PSO in this paper, can be applied to any other pamulbased search technique with minor
modifications. The empirical analysis of the proposed ICR&Orithm on 18 constrained benchmark
problems and its comparison with other algorithms showttheproposed algorithm is quite promising
for solving constrained problems. In the present study we haed the Vander Corput sequence however
any other low discrepancy sequences like Sobol or Halton afsybe used to initialize the population.
We are continuing the further study of the algorithm and ai@guit for solving constrained real life
problems taken from various fields of Science and Engingerin
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= —2x4—25+w10=0

@
3
8

8

= —2z6—2x7+x11 <0

)
o0

Appendix
. FO1:
4 4 13
Minimize f(z) =5 z; — 5> a7 — > x;
i=1 i=1 i=5
Subject to:
g1(z) = 2z1+4+2z24+210+211 —10<0
g2(x) = 2z +2x3+ 210+ 212 — 10 <0
g3(x) = 2x9+2x3+ w11 +212—10<0
ga(z) = —8r1+mw10<0
g5(x) = —8ro+x11 <0
gs(x) = —8xz3+x12<0
(x)
(x)
(x)

8

= —2zg—x9+w12<0

N
)

0<z<1(i=1,2,...,9),0<a <100, =10,11,12) 0 < 215 < 1

The optimum value ig (z*) = —15 atz* = (1,1,1,1,1,1,1,1,1, 3,3,3,1)
Constraintsyy, g2, g3, g7, gs, go are active.

. FO2:
Maximize . . . )
o) = Yo cost(x;) — 2], cos®(x;)
Doy i}
Subject to:

gi(@) = 075z <0
=1

n
g2(x) = le —7.5n <0
i=1

0<z;<10(i=1,2,...,n), n=20
The optimum value is unknown. The known best valug(is*) = 0.803619
Constraint g is active.

. FO3:

Minimize

15
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Subject to:
n
hi(z) :Zx?—l =0
i=1
0<z;<10(i=1,2,...,n)

The optimum value i (z*) = —1 atz* = (1/y/n), n = 10.

. FO4
Minimize f(x) = 5.3578547x% + 0.8356891x1 75 + 37.293239z; — 40792.141
Subject to:
g1(x) = 85.334407 + 0.0056858x2x5 + 0.000626221 x4 — 0.0022053x35
g2(z) = 80.51249 + 0.0071317z225 + 0.002995521 29 + 0.0021813x3
g3(x) = 9.300961 + 0.0047026x3x5 + 0.001254721 23 + 0.0019085232 4

0<gi(z) <92
90 < ga(z) <110
20 < g3(x) <25

78 < my < 102,33 < my < 45,27 < z; < 45 (i = 3,4,5).

The optimum value ig (z*) = —30665.539 at
x* = (78, 33,29.995256025682, 45, 36.775812905788)

. FO5

Minimize f(x) = 3z1 + 0.000001z3 + 222 + (0.000002/3)x3
Subject to:

= —x44+2x23—055<0

—x3+ x4 —0.55 <0

1000 sin(—z3 — 0.25) + 1000 sin(—x4 — 0.25) + 894.8 — x1 =0
1000 sin(z3 — 0.25) 4+ 1000 sin(x3 — x4 — 0.25) + 894.8 — x5 = 0
= 1000sin(x4 — 0.25) + 1000 sin(x4 — 23 — 0.25) 4+ 1294.8 = 0

>
w
A~ N~~~
\_/\_/\2:2/\_/\_/
Il

0< a2 <1200 (i =1,2), —0.55 < x5 < 0.55 (i = 3,4).
The optimum value ig (z*) = 5126.4981 atz* = (679.9463, 1026.067, 0.1188764, —0.3962336).

. FO6

Minimize f(z) = (z; — 10)3 + (25 — 20)3
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Subject to:

gi(x) = —(x1—5)* = (z9—5)*+100<0
g2(z) = (21 —6)2+ (20 —5)> —82.81 <0

13 < z; <100,0 < 29 <100
The optimum value ig (z*) = —6961.81388 atz* = (14.095, 0.84296).

. FO7:

Minimize f(z) = 22 + 23 + x129 — 1427 — 1623 + (v3 — 10)? + 4(24 — 5)% + (w5 — 5)?
+2(z6 — 1)% + 522 + T(wg — 11)% + 2(mg — 10)% + (z10 — 7)? + 45

Subject to:

g1(x) = —105 + 4z; + 5xe — 3x7 + 9xg < 0g2(x) = 10x; — 8z — 1727 + 228 < Og3(z) =
—871 42w+ 529 — 2110 — 12 < 0g4(z) = 3(21 —2)? +4(w9—3)? +223 — Tr4 — 120 < Og5(x) =
572 4+ 8z + (13 —6)? — 274 — 40 < 0gg(7) = 22 +2(13 —2)% — 2x129 + 1425 — 636 < Og7 ()
0.5(x1 — 8)2 + 2(m — 4)? + 322 — 26 — 30 < Ogs(x) = —3x1 + 622 + 12(x9 — 8)? — Tx10
0-10 < x; <10(i = 1,2,...,10)

The optimum value ig (z*) = 24.3062091 atz* = (2.171996, 2.363683, 8.773926, 5.095984,
0.9906548,1.430574,1.321644, 9.828726, 8.280092, 8.375927)

IN

Constraints g, 02, 03, G4, g5 and g; are active.

. FO8:

sin®(27z1) sin(27x2)

Maximize f(z) = =507,

Subject to:

gi(x) =22 —23+ 1< 0ga(x) =1 — 21+ (22 —4)2 <0

0<x; <10 (i=1,2).

The optimum value ig (z*) = 0.095825at «* = (1.2279713,4.2453733).

. F09:
Minimize f(z) = (z1—10)2+5(x2—12)2+23+3(24—11)?+1028 + T2 + 2i — 426 07— 1026 — 827
Subject to:

g1(x) = 1274222 + 324+ x3+ 422 + 5r5 < Ogo(x) = —282+ Txy —|—3x2—|—10x§+x4—x5 <
0g3(z) = —196 + 2371 + 23 + 622 — 8x7 < 0g4(x) = 4% + 23 — 3w179 + 223 + 526 — 1127 <
0-10<2; <10 =1,2,...,7)

The optimum value ig (z*) = 680.6300573atx™ = (2.330499, 1.951372, —0.4775414,4.365726,
—0.624487,1.038131, 1.5942270).
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F10:
Minimize f(z) = z1 + x2 + x3
Subject to:

g1(x) = =14 0.0025(z4 + x6) < 0g2(xz) = —1 + 0.0025(x5 + z7 — x4) < Ogz(x) = —1 +
0.01(zg — 5) < 0g4(x) = —z126 + 833.3325224 + 10021 — 83333.333 < 0g5(x) = —z227 +
1250z5 + xoxy — 125024 < Ogg(x) = —x3xs + 1250000 + z325 — 250025 < 0

—100 < z; < 10000, 1000 < z; < 10000(i = 2,3), 10 < x; < 1000(i = 4,...,8).
The optimum value ig (z*) = 7049.25at
x* = (579.19,1360.13,5109.5979, 182.0174,295.5985, 217.9799, 286.40, 395.5979).

F11:

Minimize f(z) = 2% + (z2 — 1)*

Subject to:

hi(z) =23 —23=0-1<2;,<1(i=1,2)

The optimum value ig (z*) = 0.75at2z* = (£1/v/2,1/2).
F12:

Minimize f(x) = —(100 — (z1 — 5)? — (v2 — 5)% — (x, — 5)%)/100
Subject to:

g(x) = (x1 —p)® + (v2 — ¢)% + (x3 — )2 — 0.0625 < 0
0<2;<10,2=1,2,3,p,q,r=1,2,...,9

The optimum value ig (z*) = —latz* = (5,5, 5).

F13:

Minimize f(z) = e"1#2¥3%4%5

Subject to:

hi(z) = 22 + 23 + 23 + 23 + 22 — 10 = Oha(x) = 2273 — Sagzs = Ohg(x) =23 + 25 +1=0
—23<2;<23,¢1=1,2

39<2;<32i=345

The optimum value ig (z*) = 0.053%9at z* = (—1.7171,1.5957,1.8272, —0.7636, —0.7636).

F14:

10
Minimize f(z) = > x; | ¢ + In 5~

i=1 S
=1
Subject to:

hl(x) = x1 4+ 229 + 223 + x5 + 10 — 2 :0h2(x) =x44+ 225+ +2x7—1= Ohg(.%') =
r3+x7+axs+ 229+ 70— 1=0
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0<z;<10,i=1,...,10

Wherec; = —6.089, ¢y = —17.164, c3 = —34.054, ¢, = —5.914, c5 = —24.721, cg = —14.986,
cr = —24.1,c5 = —10.708, cg = —26.662, c19 = —22.179

The optimum value ig (z*) = —47.7648at * = (0.04066, 0.14772,0.78320, 0.00141, 0.48529,
0.00069, 0.02740, 0.017950, 0.03732, 0.09688)

F15:

Minimize f(x) = 1000 — x% — 2x§ — x% — 1Ty — X123

Subject to:

hi(z) = 22 + 22 + 23 — 25 = Oha(x) = 81 + 1429 + 723 — 56 = 0

0<2;<10,2=1,2,3

The optimum value ig (z*) = 961.7150at z* = (3.5121,0.2169, 3.5521)

F16:

Minimize f(xz) = 0.00011y;4 + 0.1365 + 0.00002358y13 +0.000001502y16 + 0.0321y12 +
0.004324y5 + 0.000l‘ész + 37.480'%22 — 0.0000005843y17

Subject to:

91 = 573Ys — 4 < 0,00 = w3 — 1575 <0,

g3 = 349642 —21 <0, g4 = 110.64+y; — 222 <0, g5 = 1 —405.23 < 0, g = 213.1—y, <0

g7 = y2 — 1053.6667 < 0, gg = 17.505 — 5 < 0

go =y3—35.03 < 0,910 = 11.275—y3 < 0, g11 = 4 —665.585 < 0, g1 = 214.228 — 4 < 0,
913 = Y5 — 584.463 < 0,914 = 7.458 —y5 <0,

915 = Y6 — 265.916 < 0, g16 = 0.961 — yg < 0, g17 = y7 — 7.046 < 0, g15 = 1.612 — y7 < 0,
g9 = ys — 0.222 < 0, goo = 0.146 — yg < 0, go1 = yo — 273.366 < 0, gao = 107.99 — yo < 0,
g23 = Y10 — 1286.105 < 0, go4 = 922.693 — Y10 < 0, go5 = Y11 — 1444.046 < 0, gog —
926.832—y11 S 0, gor = y12—537.141 < 0, gog = 18.766—3/12 < 0, gog = y13—3247.039 < 0,
g3o = 1072.163 — Y13 S 0, g31 = Y14 — 26844.086 S 0,

g3z = 8961.448 — y14 < 0, g33 = y15 — 0.386 < 0, g34 = 0.063 — y15 < 0, g35 = Y16 —
140,000 < 0,

g36 = T1,084.33 — y16 < 0, g37 = y17 — 12,146,108 < 0, g3z = 2,802,713 — 17 < 0,
704.4148 < 1 < 906.3855,68.6 < x5 < 288.88,0 < 23 < 134.75, 193 < x4 < 287.0966,
25 < 5 < 84.1988.

Calculations:

Y1 = T2 + 23 +41.6, ¢1 = 0.024x4 — 4.62 , 9o = %-5 +12,

co = 0.00035352% + 0.5311z1 + 0.08705y221 , c3 = 0.052x1 + 78 + 0.002377yo 21 ,

ys =2, ys =193, e = 0.04782(xy — yg) + 2100w 16376y, + 1.594y3,

x2

¢5 =100x2, c6 = 21 —y3 — ya, 07 = 0.95 — 2, ys = C6C7 , Y6 =21 — Y5 — Y4 — Y3
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17.

18.

M. Pant et al. / Low Discrepancy Initialized PSO for SolvingrStrained Optimization

cs = (ys +v4)0.995, y7 = ;—f, yg = 3;%, cy = y7 — 0-02% —0.3153
yo = 28240321y, y1o = 1.29y5+1.258y4+2.29y3+1.71ys , y11 = 17121 —0.452y,+0.58y3
C10 = %, Cc11 = (1753/2)(0995561), C12 = 0995y10 + 1998, Y12 = C10%1 + %

— _ — 146312
Y13 = c12 — 1.75y2 , y14 = 3623 4 64.4x9 + 58.4x3 + votzs

c13 = 0.995y10 + 60.872 + 4824 — 0.1121y14 — 5095 , 15 = L2

Y16 = 148000 — 331000y15 + 40y13 — 61y15y13 , C14 = 2324y19 — 287400003

y17 = 14130, 000 — 1328y10 — 531y11 + % , Cl5 = % — 54%

c16 = 1.104 — 0.72y15 , c17 = yg + x5 .

F17:
Minimize f(x) = fl(-%'l) + fg(xg)
Constraints:
28zy 0 < 9 < 100
Filz1) Slop 0= <300 29z, 100 < 24 < 200
X = X = T X
n 30z, 300 <z <400 "0V 2 ==
30zy 200 < 29 < 1000

71 = 300 — 1554 cos(1ABATT — mg) + 209825 (05(1.47588)

131.07:
2
Ty = — 7HIL cos(1ARATT 4 26) + Lot ¢os(1.47588)

2
5 = —EA sin(1.484TT + m6) + 0ot i (1.47588)200 — 1284 sin(1.48477 — a6) +

1 LO0TES sin(1.47588) = 0

0 <x; <400

0 < 29 <1000

340 < 3 < 420

340 < x4 <420

—1000 < z5 < 1000

0 < x5 <0.5236
F18:
Minimize f(z) = —0.5(x124 — zow3 + T3x9 — T5T9 + T5T8 — TEXT)
Subject to:

g1(z) = SC%—FSCZ—l < 0ga(z) = :cg—l < 0g3(z) = x§+x%—1 < 0g4(z) = x%+(:c2—x9)2—1 <
0g5(z) = (71 — 25)? + (12 — 26)? — 1 < 0g6(2) = (z1 — 27)% + (22 — 23)? — 1 < 0gr(x) =
(563 - $5)2 + ($4 - 566)2 —-1<0

gs(z) = (w3 — 27)” + (14 —28)* =1 <0
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go(z) = 22 + (25 — 29)> =1 <0
g10(7) = w273 — 1125 < 0
g11(7) = —x329 <0
g12(z) = w5209 <0

glg(x) = TgL7 — T5X8 S 0

~10<2;<10,i=1,...,8,0< zg < 10

The optimum value ig (z*) = —0.8660at ™ = (—0.65777, —0.15341, 0.32341, —0.94625,

—0.65777,—0.75321,0.32341, —0.34646, 0.59979)
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