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Summary. In this chapter, we review a few important concepts from Grid computing
related to scheduling problems and their resolution using heuristic and meta-heuristic
approaches. Scheduling problems are at the heart of any Grid-like computational sys-
tem. Different types of scheduling based on different criteria, such as static vs. dy-
namic environment, multi-objectivity, adaptivity, etc., are identified. Then, heuristics
and meta-heuristics methods for scheduling in Grids are presented. The chapter reveals
the complexity of the scheduling problem in Computational Grids when compared to
scheduling in classical parallel and distributed systems and shows the usefulness of
heuristics and meta-heuristics approaches for the design of efficient Grid schedulers.
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1.1 Introduction

Grid Computing is a powerful computing paradigm penetrating each time more
in every activity of our lives! Grid computing is about benefiting from large
computing power never known before, is about scientific progress, business and
much more! What would it mean if:

• A researcher from Computer Science could solve to optimality his favorite
NP-hard problem within a few hours?

• A researcher from Chemistry could obtain a new drug design not known
before?

• A researcher from Biomedicine could discover the DNA sequencing and use
it for investigating diseases?

• A climate forecast center could predict in advance a possible tsunami?
• A medical team could remotely run a complex surgery operation using virtual

laboratories?
• An economist could analyze almost on real time portfolio values?
• A student of online distance university could contribute his computer to a

computational infrastructure and work online with his team for achieving
the academic goals?
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• An enterprise could never run short of computational resources?
• ...an many more real life scenarios?

It would really mean increasing our knowledge on complex problems, im-
proving our lives, improving our productivity and achieving ambitious goals not
possible before! Today all these are possible thanks to advances in Grid Com-
puting!

Grid computing and Grid technologies have primarily emerged for scientific
and technical work, where geographically distributed computers, linked through
Internet, are used to create virtual supercomputers of vast amount of computing
capacity able to solve complex problems from eScience in less time than known
before. Thus, within the last years we have witnessed how Grid Computing has
helped to achieve breakthroughs in meteorology, physics, medicine and other
computing-intensive fields. Examples of such large scale applications are known
from optimization (e.g. Casanova et al. [17], Goux et al. [34], Wright [66], Wright
et al. [43]), Collaborative/eScience Computing (e.g. Newman et al. [51], Paniagua
et al. [54]), Data-Intensive Computing (e.g. Beynon al. [6]), to name a few.

Grid computing is still in the development stage, and most projects are still
from academia and large IT enterprises; it has however developed very quickly
and more and more scientists are currently engaged to solve many challenges
in Grid Computing. Among these, improving its efficiency is imperative! The
question is:

“How to make use of millions of computers world-wide, ranging from
simple laptops, to clusters of computers and supercomputers connected
through heterogenous networks in an efficient, secure and reliable man-
ner?”

The above question is a real challenge for Grid computing community. The
good news are the reported advances in both scientific research in Grid Com-
puting and technological achievements and software development for enabling
Grid computing systems. Software packages exist and have been successfully de-
ployed and it is now possible to build Grid systems joining together both single
computers and clusters of computers yet, the challenging problem of dynami-
cally and adaptively allocating resources in response to demanding application
requests remains unsolved. For the majority of grid systems, scheduling is a very
important mechanism. In the simplest of cases, scheduling of jobs can be done
in a blind way by simply assigning the incoming tasks to the compatible re-
sources according to their availability. Nevertheless, it is a lot more profitable to
use more advanced and sophisticated schedulers. Moreover, the schedulers would
generally be expected to react to the dynamics of the grid system, typically by
evaluating the present load of the resources, and notifying when new resources
join or drop from the system. Additionally, schedulers can be organized in a
hierarchical form or can be distributed in order to deal with the large scale of
the grid.

In this chapter, we focus on the design of efficient Grid schedulers using heuris-
tics and meta-heuristics methods. Heuristic and meta-heuristics methods have
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proven to be efficient in solving many computationally hard problems. They
are showing their usefulness also in the Grid Computing domain, especially
for scheduling and resource allocation. We analyze why heuristics and meta-
heuristics methods are good alternatives to more traditional scheduling tech-
niques and what make them appropriate for Grid scheduling. An important issue
here is how to formally define the Grid scheduling problem. We have presented
the most important and useful computational models for this purpose.

The rest of the chapter is organized as follows. We present in Section 1.2 a
few important concepts from Grid computing, introduce a few types of Grids
in view of needs for different types of scheduling and resource allocation. Then,
in Section 1.3 we identify different types of scheduling problems arising in Grid
systems. In Section 1.4, we focus in the current state of using heuristic and meta-
heuristic methods for solving scheduling problems in Grid systems, as de facto
approaches for dealing with the complexity of the problem. A few other issues
such as security and grid services scheduling are discussed in Section 1.5. We
end the chapter in Section 1.6 with a few conclusions.

1.2 The many Grids

The present state of the computation systems is, in some aspects, analogous
to that of the electricity systems at the beginning of the 20th century. At that
time, the generation of electricity was possible, but still it was necessary to
have available generators of electricity. The true revolution that permitted its
establishment was the discovery of new technologies, namely the networks of dis-
tribution and broadcast of electricity. These discoveries made possible to provide
a reliable, low price service and thus the electricity became universally accessible.

By analogy, the term grid is adopted to designate a computational infrastruc-
ture of distributed resources, highly heterogeneous (as regards their computing
power and architecture), interconnected by heterogeneous communication net-
works and by a middleware that offers reliable, simple, transparent, efficient and
global access to their potential of computation.

The Grid Computing domain has witnesses a fast development over a rel-
atively short time period, pushed by important technology advancements and
interest of large IT companies such as IBM, Sun Microsystems, Oracle and HP.
The roots of Grid Computing can be traced back to the late 1980s and the first
concept that laid the basis of today’s Grid systems were developed by researchers
from distributed super-computing for numerical or optimization with particu-
lar emphasis on scheduling algorithms to achieve high performance computing
(e.g. Condor-G). By the late 1990s, the term of Computational Grids and Grid
Computing were popularized by Foster et al. [26, 27] who developed the Globus
toolkit as a general middleware for Grid Systems. Since then, Grid Computing,
Grid systems and Grid technology are advancing in unstoppable way! In the
following subsections we briefly review most important types of Grids pushing
Grid technology, actually, it is by large impossible to review all existing types of
Grids and Grid projects running world-wide!
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1.2.1 Computational Grids

One of the first questions raised by this emerging technology is its utility or
the need of disposing computational grids. On the one hand, the computational
proposals have usually shown to have a great success in any field of the human
activity. Guided by the increase of the complexity of the real life problems, and
prompted by the increment of the capacity of the technology, the human activ-
ity (whether scientific, engineering, business, personal, etc.) is highly based on
computation. Computers are very often used to model and to simulate complex
problems, for diagnoses, plant control, weather forecast, and many other fields
of interest. Even so, there exist many problems that challenge or exceed our
ability to solve them, typically because they require processing a large quantity
of operations or data. In spite of the fact that the capacity of the computers con-
tinues improving, the computational resources do not respond to the continuous
demand for more computational power.

On the other hand, statistical data show that computers are usually infra-
utilized. Most of computers from companies, administration, etc. are most of the
time idle or are used for basic tasks that do not require the whole computation
power. It is pointed out however by several statistic studies that a considerable
amount of money is spent for the acquisition of these resources. One of the main
objectives of the grid technology is, therefore, to benefit from the existence of
many computation resources through the sharing. As pointed out by Foster &
Kesselman “the sharing that we are concerned with is not primarily file exchange
but rather direct access to computers, software, data, and other resources...”

1.2.2 Scavenging Grids

In a simple Computational Grid, such as united devices, the politics of “scaveng-
ing” is applied. This means, each time a machine remains idle, it reports its state
to the grid node responsible for the management and planning of the resources.
Then, this node usually assigns to the idle machine the next pending task that
can be executed in that machine. Scavenging normally hinders the owner of the
application, since in the event that the idle machine changes its state to be busy
with tasks not coming from the grid system, the application is suspended or
delayed. This situation would create completion times not predictable for grid-
based applications. With the objective of having a predictable behavior, the
resources participating in the grid often are dedicated resources (exclusive use
in the grid), and they do not suffer from preemptions caused by external works.
Moreover, this permits the tools associated to the schedulers (generally known
as profilers) to compute the approximate completion time for an assembly of
tasks, when their characteristics are known in advance. Sethi@home project is
an example of scavenging Grids.

1.2.3 eScience Grids

Under the name of eScience Grids are known types of Grids that are primarily
devoted to the solution of problems from science and engineering. Such Grids give
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support to the computational infra-structure (access to computational and data
resources) needed to solve many complex problems arising in areas of science
and engineering. Representative examples are UK eScience Grid, German D-
Grid, BIG GRID (the Dutch e-Science Grid) and French Grid’5000, to name a
few.

1.2.4 Data Grids

Data grids are Grid computing systems that primarily deal with data reposi-
tories, sharing, access and management of large amounts of distributed data.
Many scientific and engineering applications require access to large amounts of
distributed data, however, different data could have their own format. An ap-
plication that needs access to data in different source data needs transparent
and secure access to the data. In such Grid systems many types of algorithms,
such as replication, are important to increase the performance of Grid enabled
applications that use large amount of data. Also, data movement is an issue here
in order to achieve high throughput.

1.2.5 Enterprise Grids

Although Grid technologies were motivated by High Performance Computing
and have been used for several years now in scientific labs, nowadays Grid
computing is becoming a significant component of business. Indeed, today’s e-
business must be able to respond to increasing costumer demands and adjust
dynamically and efficiently to marketplace shifts and customer demands. Enter-
prise Grids make possible to run several projects within one large enterprise or
many departments to share resources (computational and/or data) in a trans-
parent way. It should be noted that in such Grids the security and resource
policy management issues are not of first concern. Enterprise Grids are thus
showing great and innovative changes on how computing is used. Indeed, Grid
Computing is envisaged as a significant factor for increasing the productivity
and efficiency to the world-wide business. The Grid offers a large potential to
solving business problems by facilitating global access to enterprise computing
services and data. Examples of enterprise grids are “Sun Grid Engine”, “IBM
Grid”, “Oracle Grid” and “HP Grid”.

A new form of enterprise grids is also emerging in institutions, the so called
desktop grids, which use the idle cycles of mainly desktop PC’s. Small enterprises
and institutions usually are equipped with hundreds or thousands of desktops
mainly used for office tasks. This amount of PCs is thus a good source for setting
up a Grid system for the institution. In this case, the particularity of the Grid
system is its unique administrative domain, which makes it easier to manage
due to low heterogeneity and volatility of resources (for instance, all PC’s could
be running under the same OS). Of course, the desktop Grid can cross many
administrative domains and in this case the heterogeneity and volatility of the
resources is an issue as in a general Grid system setting.
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1.3 Scheduling Problems in Computational Grids

Rather than a problem, scheduling in Grid systems can be viewed as a whole
family of problems. This is due to the many parameters that intervene scheduling
as well as to the different needs of Grid-enabled applications. In the following,
we give some basic concepts of scheduling in Grid systems and identify most
common scheduling types. Needless to say, job scheduling in its different forms
is computationally hard; it has been shown that the problem of finding optimum
scheduling in heterogeneous systems is in general NP-hard [30].

1.3.1 Basic Concepts and Terminology

Although many types of resources can be shared and used in a Computational
Grid, normally they are accessed through an application running in the grid.
Normally, an application is used to define the piece of work of higher level in the
Grid. A typical grid scenario is as follows: an application can generate several
jobs, which in turn can be composed of sub-tasks, in order to be solved; the grid
system is responsible for sending each sub-task to a resource to be solved. In a
simpler grid scenario, it is the user who selects the most adequate machine to
execute its sub-tasks. However, in general, grid systems must dispose of sched-
ulers that automatically and efficiently find the most appropriate machines to
execute an assembly of tasks.

New characteristics of Scheduling in Grids

The scheduling problem in distributed systems is not new at all; as a matter of
fact it is one of the most studied problems in the optimization research com-
munity. However, in the grid setting there are several characteristics that make
the problem different from its traditional version of conventional distributed
systems. Some of these characteristics are the following:

• The dynamic structure of the Computational Grid. Unlike traditional dis-
tributed systems such as clusters, resources in a Grid system can join or
leave the Grid in an unpredictable way. It could be simply due to loosing
connection to the system or because their owners switch off the machine or
change the operating system, etc. Given that the resources cross different
administrative domains, there is no control over the resources.

• The high heterogeneity of resources. Grid systems act as large virtual super-
computers, yet the computational resources could be very disparate, ranging
from laptops, desktops, clusters, supercomputers and even small devices of
limited computational resources. Current Grid infrastructures are not yet
much versatile but heterogeneity is among most important features to take
into account in any Grid system.

• The high heterogeneity of jobs. Jobs arriving to any Grid system are diverse
and heterogenous in terms of their computational needs. For instance, they
could be computing intensive or could be data intensive; some jobs could be
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full applications having a whole range of specifications other could be just
atomic tasks. Importantly, Grid system could not be aware of the type of
tasks, jobs or applications arriving in the system.

• The high heterogeneity of interconnection networks. Grid resources will be
connected through Internet using different interconnection networks. Trans-
mission costs will often be very important in the overall Grid performance
and hence smart ways to cope with the heterogeneity of interconnection
networks is necessary.

• The existence of local schedulers in different organizations or resources. Grids
are expected to be constructed by the “contribution” of computational re-
sources across institutions, universities, enterprises and individuals. Most of
these resources could eventually be running local applications and use their
local schedulers, say, a Condor batch system. In such cases, one possible re-
quirement could be to use the local scheduler of the domain rather than an
external one.

• The existence of local policies on resources. Again, due to the different owner-
ship of the resources, one cannot assume full control over the Grid resources.
Companies might have unexpected computational needs and may decide to
reduce their contribution to the Grid. Other policies such as rights access,
available storage, pay-per-use, etc. are also to be taken into account.

• Job-resource requirements. Current Grid schedulers assume full availability
and compatibility of resources when scheduling. In real situations, however,
many restrictions and/or incompatibilities could be derived from job and
resource specifications.

• Large scale of the Grid system. Grid systems are expected to be large scale,
joining hundreds or thousands of computational nodes world-wide. More-
over, the jobs, tasks or applications submitted to the Grid could be large in
number since different independent users and/or applications will send their
jobs to the Grid without knowing previous workload of the system. There-
fore, the efficient management of resources and planning of jobs will require
the use of different types of scheduling (super-schedulers, meta-schedulers,
decentralized schedulers, local schedulers, resource brokers, etc.) and their
possible hierarchical combinations.

• Security. This characteristic, which is inexisting in classical scheduling, is
an important issue in Grid scheduling. Here the security can be seen as a
two-fold objective: on the one hand, a task, job or application could have
a security requirement to be allocated in a secure node, that is, the node
will not “watch” or access the processing and data used by the task, job or
application. On the other hand, the node could have a security requirement,
that is, the task, job or application running in the resource will not “watch”
or access other data in the node.

A general definition and terminology

A precise definition of a Grid scheduler will much depend on the way the sched-
uler is organized (whether it is a super-scheduler, meta-scheduler, decentralized
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scheduler or a local scheduler) and the characteristics of the environment such as
dynamics of the system. In a general setting, however, a Grid scheduler will be
permanently running as follows: receive new incoming jobs, check for available
resources, select the appropriate resources according to feasibility (job require-
ments to resources) and performance criteria and produce a planning of jobs
(making decision about job ordering and priorities) to selected resources.

Usually the following terminology is employed for scheduling in Grids:

Task: represents a computational unit (typically a program and possibly asso-
ciated data) to run on a Grid node. Although in the literature there is no
unique definition of task concept, usually a task is considered as an indivisi-
ble schedulable unit. Tasks could be independent (or loosely coupled) among
them or there could have dependencies, as it is the case of Grid workflows.

Job: A job is a computational activity made up of several tasks that could
require different processing capabilities and could have different resource
requirements (CPU, number of nodes, memory, software libraries, etc.) and
constraints, usually expressed within job description. In the simplest case, a
job could have just one task.

Application: An application is a software for solving a (large) problem in a
computational infrastructure; it may require splitting the computation into
many jobs or it could be a “monolithic” application. In the later case, the
whole application is allocated in a computational node and is usually referred
to as application deployment. As in the case of jobs, applications could have
different resource requirements (CPU, number of nodes, memory, software
libraries, etc.) and constraints, usually expressed within application descrip-
tion.

Resource: A resource is a basic computational entity (computational device
or service) where tasks, jobs and applications are scheduled, allocated and
processed accordingly. Resources have their own characteristics such as CPU
characteristics, memory, software, etc. Several parameters are usually associ-
ated with a resource, among them, the processing speed and workload, which
change over time. As in the case of jobs and applications, resource character-
istics are usually given by the resource description. It should be noted that
in a Grid computing environment resources are geographically distributed
and may belong to different administrative domains implying different usage
policies and access rights.

Specifications: Task, job and application requirements are usually specified
using high level specification languages (meta-languages). Similarly, the re-
source characteristics are expressed using specification languages. One such
language is the ClassAds language [56].

Resource pre-reservation: The pre-reservation is needed either when tasks,
jobs or applications have requirements on the finishing time or when there
are dependencies/precedence constraints that require advance resource reser-
vation to assure the correct execution of the workflow. The advance reser-
vation goes through negotiation and agreement protocols between resource
providers and consumers.
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Planning: A planning is the mapping of tasks, jobs and applications to com-
putational resources.

Grid Scheduler: Software components in charge of computing a mapping of
tasks, jobs or applications to Grid resources under multiple criteria and
Grid environment configurations. Different levels within a Grid scheduler
have been identified in the Grid computing literature comprising: super-
schedulers, meta-scheduler, local/cluster scheduler and enterprise scheduler.
As a main component of any Grid system, Grid scheduler interacts with
other components of the Grid system: Grid information system, local re-
source management systems and network management systems. It should
be noted that in Grid environments, all these kinds of schedulers must co-
exists, and they could in general pursue conflicting goals, thus, there is need
for interaction between the different schedulers in order to execute the tasks.

Super-scheduler: This kind of schedulers corresponds to a centralized sche-
duling approach in which local schedulers are used to reserve and allocate
resources in the Grid. The local schedulers manage their job queue process-
ing. The super-scheduler is in charge of managing the advance reservation,
negotiation and service level agreement. Notice that tasks, jobs or applica-
tions are entirely completed in unique resource.

Meta-scheduler: This kind of schedulers (also known as Meta-broker in the
literature) arise when a single job or application is allocated in more than
one resource across different systems. As in the case of super-schedulers, a
meta-scheduler uses local schedulers of the particular systems. Thus, meta-
schedulers coordinate local schedulers to compute an overall schedule. Per-
forming load balancing across multiple systems is a main objective of such
schedulers.

Local/Cluster Scheduler: This kind of scheduler is in charge of assigning
tasks, jobs or applications to resources in the same local area network. The
scheduler manages the local resources and the local job queuing system and
is this a “close to resource” scheduler type.

Enterprise Scheduler: This type of scheduler arises in large enterprises having
computational resources distributed in many enterprise departments. The
enterprise scheduler uses the different local schedulers belonging to the same
enterprise.

Immediate mode scheduling: In the immediate mode scheduling, tasks, jobs
or applications are scheduled as soon as they enter the system.

Batch model scheduling: In the batch mode scheduling, tasks, jobs or appli-
cations are grouped into batches which are allocated to the resources by the
scheduler. The results of processing are usually obtained at a later time.

Non-preemptive/preemptive scheduling: This classification of scheduling
establishes whether a task, job or application can be interrupted or not,
once allocated to the resource. In the non-preemptive mode, a task, job or
application should entirely be completed in the resource (the resource cannot
be taken away from the task, job or application). In the preemptive mode,
the preemption is allowed, that is, the current execution of the job can be
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interrupted and the job is migrated to another resource. Preemption can be
useful if job priority is to be considered as one of the constraints.

High-throughput schedulers: The objective of this kind of scheduler is to
maximize the throughput (average number of tasks or jobs processed per unit
of time) in the system. These schedulers are thus task-oriented schedulers,
that is, the focus is in task performance criteria.

Resource-oriented schedulers: The objective of this kind of scheduler is to
maximize resource utilization. These schedulers are thus resource-oriented
schedulers, that is, the focus is in resource performance criteria.

Application-oriented schedulers: This kind of schedulers are concerned with
scheduling applications in order to meet user’s performance criteria. To this
end, the scheduler have to take into account the application specific as well
as system information to achieve the best performance of the application.
The interaction with the user could also be considered.

Phases of scheduling in Grids

In order to perform the scheduling process, the Grid scheduler has to follow a
series of steps which could be classified into five blocks: (1) Preparation and
information gathering on tasks, jobs or applications submitted to the Grid; (2)
Resource selection; (3) Computation of the planning of tasks (jobs or applica-
tions) to selected resources; (4) Task (job or application) allocation according to
the planning (the mapping of tasks, jobs or applications to selected resources);
and, (5) Monitoring of task, job or application completion (the user is referred
to [61] for a detailed description).

Preparation and information gathering: The Grid scheduler will have ac-
cess to the Grid information on available resources and tasks, jobs or appli-
cations (usually known as “Grid Information Service” in the Grid literature).
Moreover, the scheduler will be informed about updated information (accord-
ing to the scheduling mode). This information is crucial for the scheduler in
order to compute the planning of tasks, jobs or applications to the resources.

Resource selection: Not all resources could be candidates for allocation of
task, jobs or applications. Therefore, the selection process is carried out
based on job requirements and resource characteristics. The selection pro-
cess, again, will depend on the scheduling mode. For instance, if tasks were
to be allocated in a batch mode, a pool of as many as possible candidate re-
sources will be identified out of the set of all available resources. The selected
resources are then used to compute the mapping that meets the optimization
criteria.
As part of resource selection, there is also the advanced reservation of re-

sources. Information about future execution of tasks is crucial in this case.
Although the queue status could be useful in this case, it is not accurate,
especially if priority is one of the task requirements. Another alternative is
using prediction methods based on historical data or users specifications of
job requirements.



1 Meta-heuristics for Scheduling in Grid systems 11

Computation of the planning of tasks: In this phase the planning is com-
puted.

Task allocation: In this phase the planning is made effective: tasks (jobs or
applications) are allocated to the selected resources according to the plan-
ning.

Task execution monitoring: Once the allocation is done, the monitoring will
inform about the execution progress as well as possible failures of jobs, which
depending on the scheduling policy will be rescheduled again (or migrated
to another resource).

1.3.2 Types of Scheduling in Grids

As mentioned above, scheduling is a family of problems: on the one hand, differ-
ent applications could have different scheduling needs such as batch or immediate
mode, task independent or dependent; on the other hand, the Grid environment
characteristics itself imposes restrictions such as dynamics, use of local sched-
ulers, centralized or decentralized view of the system, etc. It is clear that in order
to achieve a good performance of the scheduler, both problem specifics and Grid
environment information should be “embedded” in the scheduler. In the follow-
ing, we describe the main types of scheduling arising in Grid environments.

Independent Scheduling

Computational Grids are parallel in nature. The potential of a massive capac-
ity of parallel computation is one of the most attractive characteristics of the
computational grids. Aside from the purely scientific needs, the computational
power is causing changes in important industries such as biomedical one, oil ex-
ploration, digital animation, aviation, in financial field, and many others. They
also appear in intensive computing applications and data intensive computing,
data mining and massive processing of data, etc. The common characteristic in
these uses is that the applications are written to be able to be partitioned into
almost independent parts (or loosely coupled). For instance, an application of
intensive use of CPUs can be thought of as an application composed by sub-
tasks (also known as bags-of-tasks applications in Grid computing literature),
each one capable to be executed in a different machine of the Computational
Grid. This kind of applications require independent scheduling, according to the
following scenario: the tasks being submitted to the grid are independent.

Grid workflows

Solving many complex problems in Grids require the combination and orches-
tration of several processes (actors, services, etc.). This arises due to the de-
pendencies in the solution flow (determined by control and data dependencies).
This class of applications are know as Grid workflows, which can take advan-
tage of the power of Grid computing, however, the characteristics of the Grid
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environment make the coordination of its execution very complex [15,76]. As in
other types of scheduling, performance is an important issue in order to enable
high performance Grid applications. Unlike independent scheduling, it is more
difficult to achieve efficient allocation of workflow tasks to the appropriate Grid
resources, which largely depends on data movement between tasks and services
as well as interaction with different data sources.

Besides the efficiency, Grid workflows should deal with robustness. Certainly,
on the one hand, a Grid workflow could run for a long period, which in a dynamic
setting increases the possibility of process failure, which could cause failure of
the whole workflow if failure mechanisms are not used.

Centralized, hierarchical and decentralized scheduling

Both centralized and decentralized scheduling are useful in Grid computing,
showing advantages and limitations. Essentially, they differ in the control of
the resources as well as knowledge of the overall Grid system. In the case of
centralized scheduling, there is more control on resources, the scheduler has
knowledge of the system by monitoring of the resources state and therefore, it’s
easier to obtain efficient schedulers. This type of scheduling, however, suffers
from limited scalability. Therefore such type of scheduling are not appropriate
for large scale Grids.

Centralized schedulers have a single point of failure. Another way to orga-
nize different Grid schedulers is in a hierarchic way, which allows to coordinate
scheduler at a certain level. In this case, schedulers at the lowest level in the hier-
archy has knowledge of the resources. This scheduler type still suffers from lack
of scalability and fault-tolerance, yet it scales better and is more fault-tolerant
than centralized schedulers.

In the decentralized or distributed scheduling there is no central entity con-
trolling the resources. The autonomous Grid sites makes it more challenging to
obtain efficient schedulers. In decentralized schedulers, the local (site) schedulers
play an important role. The scheduling requests, either by local users or other
Grid schedulers, are sent to local schedulers, which manage and maintain the
state of the queue job. This type of scheduling is more realistic for real Grid
systems of large scale although decentralized schedulers could be less efficient
than centralized schedulers.

Static vs. dynamic scheduling

There are essentially two main aspects that determine the dynamics of the Grid
scheduling, namely:

• The dynamics of job execution: This refers to the situation when job execu-
tion could fail or, in the preemptive mode, job execution is stopped due to
the arrival in the system of high priority jobs.

• The dynamics of resources: Resources can join or leave the Grid in an un-
predictable way, their workload can significantly vary over time, the local
policies on usage of resources could change over time, etc.
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The above factors decide the behavior of the Grid scheduler, ranging from
static to highly dynamic scheduling. For instance, in the static case, there is no
job failure and resources are assumed available all the time and fluctuations on
computing capacity and workload are not considered. Although this is unrealis-
tic for real Grids, it could be useful to consider for batch mode scheduling: the
number of jobs and resources is considered fixed during short intervals of time
(time interval between two successive activations of the scheduler) and the com-
puting capacity is also considered unchangeable. Other variations are possible
to consider, for instance, just the dynamics of resources but not that of jobs.

Immediate vs. batch mode scheduling

Immediate and batch scheduling are well-known methods, largely explored for
many computing environments and different types of applications. They are also
useful for Grid scheduling. In immediate mode, jobs are scheduled as soon as they
enter the system, without waiting for the next time interval when the scheduler
will get activated or the job arrival rate is small having thus available resources
to execute jobs immediately.

In batch mode, tasks jobs or applications are grouped in batches and sched-
uled as a group. Batch mode scheduling methods are simple and yet powerful
heuristics that are distinguished for their efficiency. In contrast to immediate
scheduling, batch scheduling could take better advantage of job and resource
characteristics in deciding which job to allocate to which resource since they
dispose of the time interval between two successive activations of the batch
scheduler. Immediate scheduling methods include Opportunistic Load Balanc-
ing, Minimum Completion Time, Minimum Execution Time, Switching Algo-
rithm and k-Percent Best and among batch mode methods there are Min-Min,
Max-Min, Sufferage, Relative Cost and Longest Job to Fastest Resource - Short-
est Job to Fastest Resource [1, 9, 44, 67].

Adaptive Scheduling

The changeability over time of the Grid computing environment requires adap-
tive scheduling techniques [42] which will take into account both current status
of the resources and predictions for their future status with the aim of detect-
ing and avoiding performance deterioration. Rescheduling can also be seen as a
form of adaptive scheduling in which running jobs are migrate to more suitable
resources.

Casanova et al. [18] considered a class of Grid applications with large numbers
of independent tasks (Monte Carlo simulations, parameter-space searches, etc.),
also known as task farming applications. For these applications with loosely cou-
pled tasks, the authors developed a general adaptive scheduling algorithm. The
authors used NetSolve [17] as a testbed for evaluating the proposed algorithm.

Othman et al. [52] stress the need for the Grid system’s ability to recognize
the state of the resources. The authors presented an approach for system adap-
tation, in which Grid jobs are maintained, using an adaptable Resource Broker.
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Huedo et al. [38] reported a scheduling algorithm built on top of the GridWay
framework, which uses internally adaptive scheduling to reflect the dynamic Grid
characteristics.

Scheduling in Data Grids

Grid computing environments are making possible applications that work on
distributed data and even across different data centers. In such applications, it
is not only important to allocate tasks, jobs or application to fastest and reliable
nodes but also to minimize data movement and ensure fast access to data. In
other terms, data location is important in such type of scheduling. In fact, the
usefulness of large computing capacity of the Grid could be compromised by
slow data transmission, which could be affected by both network bandwidth and
available storage resources. Therefore, data should be “close” to tasks, jobs or
applications to achieve efficient access.

1.3.3 Computation Models for Formalizing Grid Scheduling

Given the versatility of scheduling in Grid environments, one needs to consider
different computation models for Grid scheduling that would allow to formal-
ize, implement and evaluate –either in real Grid or through simulation– differ-
ent scheduling algorithms. Following we present some important computation
models for Grid scheduling. It should be noted that such models have much
in common with computation models for scheduling in distributed computing
environments. We notice that in all the models described below, tasks, jobs or
applications are submitted for completion to a single resource.

Expected Time To Compute model

In the model proposed by Ali et al. [5], it is assumed that we dispose of esti-
mation or prediction of the computational load of each task (e.g. in millions of
instructions), the computing capacity of each resource (e.g. in millions of instruc-
tions per second, MIPS), and an estimation of the prior load of each one of the
resources. Moreover, the Expected Time to Compute matrix ETC of size num-
ber of tasks by number of machines, where each position ETC[t][m] indicates
the expected time to compute task t in resource m, is assumed to be known or
computable in this model. In the simplest of cases, the entries ETC[t][m] could
be computed by dividing the workload of task t by the computing capacity of
resource m. This formulation is usually feasible, since it is possible to know the
computing capacity of resources while the computation need of the tasks (task
workload) can be known from specifications provided by the user, from historic
data or from predictions [36, 37].

Modelling heterogeneity and consistency of computing

The ETC matrix model is able to describe different degrees of heterogeneity
in distributed computing environment through consistency of computing. The
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consistency of computing refers to the coherence among execution times obtained
by a machine with those obtained by the rest of machines for a set of tasks. This
feature is particularly interesting for Grid systems whose objective is to join in
a single large virtual computer different resources ranging from laptops and PCs
to clusters and supercomputers. Thus, three types of consistency of computing
environment can be defined using the properties of the ETC matrix: consistent,
inconsistent and semi-consistent.

An ETC matrix is said to be consistent if for every pair of machines mi

and mj , if mi executes a job faster than mj then mi executes all the jobs
faster than mj . On the contrary, in an inconsistent ETC matrix, a machine mi

may execute some jobs faster than another machine mj and some jobs slower
than the same machine mj . Partially-consistent ETC matrices are inconsistent
matrices having a consistent sub-matrix of a predefined size. Further, the ETC
matrices are classified according to the degree of job heterogeneity, machine
heterogeneity and consistency of computing. Job heterogeneity expresses the
degree of variance of execution times for all jobs in a given machine. Machine
heterogeneity indicates the variance of the execution times of all machines for a
given job.

Problem instance

From the above description, it can be seen that formalizing the problem instance
is easy under the ETC model; it consists of: a vector of tasks workloads, a vector
of computing capacity of machines and the matrix ETC. As we will see in next
subsection, it is almost straightforward to define several optimization criteria
in this model to measure the quality of a feasible schedule. It is worth noting
that incompatibilities among tasks and resources can also be expressed in ETC
model, for instance, a value of +∞ to ETC[t][m] would indicate that task t is
incompatible with resource m. Other restrictions of running a job on a machine
can be simulated using penalties to ETC values. It is, however, more complicated
to simulate communication and data transmission costs.

Total Processor Cycle Consumption model

Despite of its interesting properties, the ETC model has an important limita-
tion, namely, the computing capacity of resources remains unchanged during
task computation. This limitation becomes more evident when we consider Grid
systems in which not only the resources have different computing capacities
but also they could change over time due to Grid system’s computing overload.
The computing speed of resources could be assumed constant only for short or
very short periods of time. In order to remedy this, Fujimoto and Hagihara [28]
introduced the Total Processor Cycle Consumption (TPCC) model. The total
processor cycle consumption is defined as the total number of instructions the
Grid resources could complete from the starting time of executing the sched-
ule to the completion time. As in ETC model, task workload is expressed in
number of instructions and the computing capacity of resources in number of
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instructions computed per unit time. However, now is measured the total con-
sumption of computing power due to Grid application completion. Clearly, this
model takes into account that resources could change their computing speed
over time, as it happens in large-scale computing systems whose workload is in
general unpredictable.

Problem instance

A problem instance in TPCC model consists of the vector of task workloads
(denoted task lengths in [28]) and a matrix expressing the computing speed of
resources. Since the computing speed can change over time, one should fix a short
time interval in which the computing speed remains unchanged (for instance, a
unit time interval could be considered). Then a matrix PS (for processor speed)
is built overtime in which one dimension is processor number and the other di-
mension is time (discretized by unit time); the component PS[p][t] represents
the processor’s speed during interval time [t, t + 1). As the availability and pro-
cessing speed of a resource vary over time, the processor speed distribution is
used.

This model has shown to be useful for independent and coarse-grain task
scheduling, i.e., scheduling in which the computation time in Grid nodes is su-
perior to data transmission time, such as stand-alone applications.

Grid Information System model

The computation models for Grid scheduling presented so far allow for a precise
description of problem instance however they are based on predictions, distribu-
tions or simulations. Currently, other Grid scheduling models are developed from
a higher level perspective. In the Grid Information System model the Grid sched-
uler uses task (job or application file descriptions) and resource file descriptions
as well as state information of resources (CPU usage, number of running jobs per
grid resource), provided by the Grid Information System. The Grid scheduler
then computes the best matching of tasks to resources based on the up-to-date
workload information of resources. This model is more realistic for Grid environ-
ments and is especially suited for the implementation of simple heuristics such as
FCFS (First Come First Served), EDF (Earliest Deadline First), SJF (Shortest
Job First), etc.

Problem instance

The problem instance in this model is constructed, at any point in time, from the
information on task file descriptions, resource file descriptions and the current
state information on resources.

Cluster and Multi-Cluster Grids model

Cluster and Multi-Cluster Grids refer to Grid model in which the system is made
up of several clusters. For instance the Cluster Grid of an enterprise comprises
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different clusters located at different departments of the enterprise. One main
objective of cluster grids is to provide a common computing infrastructure at
enterprise or department levels in which computing services are distributed to
different clusters. More generally, clusters could belong to different enterprises
and institutions, that is, are autonomous sites having their local users (both
local and grid jobs are run on resources) and usage policies.

The most common scheduling problem in this models is a Grid scheduler
which makes use of local schedulers of the clusters. The benefit of cluster grids
is to maximize the usage of resources and at the same time, increase throughput
for user tasks (jobs or applications). This model has been exploited in Lee and
Zomaya [47] for scheduling data-intensive bag-of-tasks applications.

Problem instance

The problem instance in this model is constructed, at any point in time, from
the information on task file descriptions; again, it is assumed that the workload
of each task is known a priori. On the other hand, the (multi-)cluster grid can
be formally represented as a set of clusters, each one with the information on
its resources. Note that in this model the Grid scheduler need not to know the
information on resources within a cluster nor the state information or control on
every Grid resource. In this way, it is possible to reduce dependencies on Grid
information services and respect local policies on resource usage.

1.3.4 Grid System Performance and Scheduling Optimization
Criteria

Several performance requirements and optimization criteria can be considered
for Grid scheduling problem –the problem is multi-objective in its general for-
mulation. We could distinguish proper Grid system performance criteria from
scheduling optimization criteria although both performance and optimization
objectives allow to establish the overall Grid system performance.

Grid system performance criteria include: CPU utilization of Grid resources,
load balancing, system usage, queuing time, throughput, turnaround time, cu-
mulative throughput (i.e. cumulative number of completed tasks) waiting time
and response time. In fact other criteria could also be considered for characteriz-
ing Grid system’s performance such as deadlines, missed deadlines, fairness, user
priority, resource failure, etc. Scheduling optimization criteria include: makespan,
flowtime, resource utilization, load balancing, matching proximity, turnaround
time, total weighted completion time, lateness, weighted number of tardy jobs,
weighted response time, etc. Both performance criteria and optimization criteria
are desirable for any Grid system; however, their achievement depends also on
the considered model (batch system, interactive system, etc.). Importantly, it
should be stressed that these criteria are conflicting among them; for instance,
minimizing makespan conflicts with resource usage and response time.

Among most popular and extensively studied optimization criterion is
the minimization of the makespan. Makespan is an indicator of the general
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productivity of the grid system: small values of makespan mean that the sched-
uler is providing good and efficient planning of tasks to resources. Considering
makespan as a stand alone criterion not necessarily implies optimization of other
objectives. As mention above, its optimization could in fact go in detriment to
other optimization criteria. Another important optimization criterion is that of
flowtime, which refers to the response time to the user submissions of task exe-
cutions. Minimizing the value of flowtime means reducing the average response
time of the Grid system. Essentially, we want to maximize the productivity
(throughput) of the grid and at the same time we want to obtain planning of
tasks to resources that offer an acceptable QoS.

Makespan, completion time and flowtime

In Grid scheduling we aim, among other criteria, to minimize the makespan and
flowtime. Makespan is the time when finishes the latest task and flowtime is the
sum of finalization times of all the tasks. Formally they can defined as:

• minimization of makespan: minSi∈Sched{maxj∈Jobs Fj} and,
• minimization of flowtime: minSi∈Sched{

∑
j∈Jobs Fj}

where Fj denotes the time when the task j finalizes, Sched is the set of all pos-
sible schedules and Jobs the set of all jobs to be scheduled. Note that makespan
is not affected by any particular execution order of tasks in a concrete resource,
while in order to minimize flowtime of a resource, tasks that have been assigned
to should be executed in a ascending order of their workload (computation time).

Completion time of a machine m is the time in which machine m will finalize
the processing of the previous assigned tasks as well as of those already planned
tasks for the machine. This parameter measures the previous workload of a
machine. Notice that this definition requires knowing both the ready time for a
machine and the expected time to complete of the tasks assigned to the machine.

The expression of makespan, flowtime and completion time depends on the
computational model. For instance, in the ETC model, completion[m] is calcu-
lated as follows:

completion[m] = ready times[m] +
∑

{j∈Tasks | schedule[j]=m}
ETC[j][m].

where ready times[m] is the time when machine m will have finished the previ-
ously assigned tasks.

Makespan can be expressed in terms of the completion time of a resource, as
follows:

makespan = max{completion[i] | i ∈ Machines}.

Similarly, for the flowtime we use the completion times of machines, but now
by first sorting in ascending order according to their ETC values the tasks
assigned to a machine. Thus for machine m the flowtime flowtime[m] can be
expressed as follows (S[m] is a vector representing the schedule for machine m):
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flowtime[m]=0;
completion = ready_times[m];
for (i = 0; i < S[m].size(); ++i) {

completion += ETC[S[m][i]][m];
flowtime[m] += completion;

}

In the case of TPCC model, for a schedule S of makespan M , the TPCC is
expressed as follows:

m∑

p=1

�M�−1∑

t=0

S[p][t] +
m∑

p=1

(M − �M�)S[p][�M�],

where m is the total number of Grid resources used in the schedule, p denotes
a processor (resource) and S[p][t] is the speed of processor during time interval
[t, t+1). Note that there is no direct relation between TPCC value and makespan
value, however the longer makespan, the larger the value of TPCC and vice-versa.
In other terms it could be established that any schedule with good TPCC value
is a schedule also with good makespan value. In fact it is claimed that the set of
makespan optimal schedules is the same as the set of TPCC optimal schedules.

It should be noted that this model is appropriate not only for heuristic-based
scheduling methods without guarantee of fitness value of the TPCC but also for
approximation1-based schedulers ensuring a quality of delivered schedule.

Resource utilization

Maximizing the resource utilization of the grid system is another important ob-
jective. This criterion is gaining importance due to the economic aspects of Grid
systems such as the contribution of resources by individuals or institutions in
exchange for economic benefits. Achieving a high resource reutilization becomes
a challenge in Grid systems given the disparity of computational resources of
the Grid. Indeed, to increment the benefit of the resource owners, the scheduler
should use any resource, yet this contradicts with the high performance criteria
since limited resources could be the bottleneck of the system. It could then be
said that from the resource owners perspective, resource utilization is a quality
of service criterion.

One possible definition of this parameter is to consider the average utilization
of resources. For instance, in the ETC model, for a schedule S, it can be defined
as follows:

avg utilization =

∑
{i∈Machines} completion[i]

makespan × nb machines
.

and we aim at maximizing this value over all possible schedules.
1 An approximation algorithm is one that delivers a feasible solution whose fitness

value is within a certain bound of the fitness of the optimal solution. Constant
factor approximation algorithms, for instance, deliver a solution whose fitness is
within a constant factor of the fitness of the optimal solution.
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Matching proximity

The Grid scheduler should not only map tasks onto resources according to task
requirements and resource characteristics but also it aims at matching the tasks
to resources that best fit them according to desired computational criteria.
Matching proximity is one such facet of the Grid scheduler, which is usually
implicitly pursued in Grid schedulers. Expressing this criterion explicitly is sort
of more difficult, as compared to other criteria.

In the ETC model, matching proximity could be defined as the degree of
proximity of a given schedule with regard to the schedule produced by Minimum
Execution Time (MET) method. MET assigns a job to the machine having the
smallest execution time for that job. Observe that a large value of matching
proximity means that a large number of jobs is assigned to the machine that
executes them faster. Formally, for a schedule S, matching proximity can be
computed as follows:

matching proximity =
∑

i∈Tasks ETC[i][S[i]]
∑

i∈Tasks ETC[i][MET [i]]
.

Turnaround time

Turnaround time is a useful criterion when the (mean) elapsed time of computa-
tion, from the submission of the first task to the completion of the last submit-
ted task, is to be measured. Dominguez et al. [21] considered this objective for
scheduling bags-of-tasks applications in desktop Grids. This objective is usually
more important in batch scheduling than in interactive applications. Kondo [40]
and Kondo et al. [41] characterized four real desktop grid systems and designed
scheduling heuristics based on resource prioritization, resource exclusion, and
task replication for fast application turnaround.

Total weighted completion time

This criterion is appropriate when user’s tasks, jobs or applications have pri-
orities. As usually, this criterion is implemented through weights associated to
tasks [33, 25] and thus the weighted completion time is expressed as:

Total weighted completion time =
∑

j∈Jobs

wjFj

where wj is the priority (weight) of job j and Fj denotes the time when the task
j finalizes (completion time of job j). As in the case of flowtime, this criterion
can be seen as QoS to the Grid user.

In a similar way are defined the total weighted tardiness and the weighted
number of tardy jobs for the case of jobs having due dates.
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Average Weighted Response Time

In interactive Grid applications, response time is an important parameter. Let wj

be the weight associated to job j, Fj its finalization time and Rj its submission
time to the Grid system. This criterion can then be expressed as follows:

∑
j∈Jobs wj(Fj − Rj)

∑
j∈Jobs wj

.

where (Fj − Rj) is the response time of job j. In [24, 60], the response time of
a job is weighted by its resource consumption (long jobs have larger resource
consumption than short jobs) to balance the impact of short jobs vs. long jobs
with a higher resource consumption.

Similarly can be defined the average weighted wait time, in which the wait time
is defined as the difference between the starting time (when job starts execution)
and submission time.

1.3.5 Multi-objective Optimization Approaches

As described in the previous subsections, Grid scheduling is multi-objective in
its general formulation. Therefore, the optimization criteria, when considered
together, have to be combined in a way that a good tradeoff among them is
achieved. There are several approaches in multi-objective optimization theory
to deal with the multi-criteria condition of the problem. Among them we could
distinguish the hierarchical and the simultaneous approach.

Hierarchical approach

This approach is useful when we would like, depending on the type of the appli-
cation or Grid scenario, to establish the priority among the criteria. For instance,
in a high performance computing we could give more priority to the makespan
and less priority to the response time; yet, if the user requirements are concerned,
we could consider the reverse priority. Let ci, 1 ≤ i ≤ N be a set of optimization
criteria. In the hierarchic approach, these criteria are sorted by their priority,
in a way that if a criterion ci is of smaller importance than criterion cj , the
value for the criterion cj cannot be varied while optimizing according to ci.
These approach has the limitations that one should a priori establish the prior-
ity among the criteria and it is not possible to optimize more than one criterion
at a time. Nonetheless, its is especially useful when the criteria are measured in
different units and can’t be combined in a single aggregate objective function
(for instance, optimizing makespan and the number of tardy jobs).

This approach has been considered in Xhafa [16, 68, 73] for the independent
job scheduling under ETC model.

Simultaneous approach

In this approach, an optimal planning is that in which any improvement with
respect to a criterion causes a deterioration with respect to another criterion.



22 F. Xhafa and A. Abraham

Dealing with many conflicting optimization criteria at the same time has
certainly a high computation cost. It should be addressed through Pareto2 opti-
mization theory [23, 62]. However, in the Grid scheduling problem, rather than
knowing many Pareto points in solution space, we could be interested to know
a schedule having a tradeoff among the considered criteria and which could be
computed very fast. Therefore, we can consider a small number of objectives at
the same time, which in general suffices for practical applications (usually two
or three criteria at the same time would suffice for practical purposes).

In the Pareto optimization theory we could distinguish two different ap-
proaches:

(a) Weighted sum approach: in this case the optimization criteria are com-
bined in a single aggregate function, which is then solved via heuristic, meta-
heuristic, AI and hybrid approaches for single-objective problems. There are
two issues here: the first is how to combine the different objectives in a mean-
ingful way in a single objective function –in fact this is not always possible!
The other problem is that suitable values to the weights of the criteria should
be found, which per se introduces new variables to the problem definition. For
practical cases, however, one could fix a priori the weights either based on a
certain (user, application, system performance) priority or conduct a tuning
process to identify appropriate values.

(b) General approach: In the general approach the objective is to efficiently
compute the Pareto optimal front [23, 62]. Many classes of meta-heuristics
algorithms have been developed for multi-objective optimization, e.g., Multi-
objective Genetic Algorithms (MOGA) [22].

As an example let’s consider the case a)whenmakespan and flowtime are consid-
ered simultaneously. As mention before, the first concern is to combine them into
a single meaningful objective function. Indeed, when summing them up, we have
to take into account that even though makespan and flowtime are measured in the
same time unit, the values they can take are in incomparable ranges, due to the fact
that flowtime has a higher magnitude order over makespan, and its difference in-
creasesasmore jobsandmachinesare considered in theGrid system. Inorder todeal
with this we consider the normalized or mean flowtime: flowtime/nb machines.
Next we have to weight both values to balance their importance:

fitness = λ · makespan + (1 − λ) · mean flowtime.

In Xhafa et al. [16, 68, 71, 72, 73] the value of λ is fixed, based on preliminary
tuning, to λ = 0.75, that is, more priority is given to makespan. In many meta-
heuristic implementations, it was observed that this single aggregate objective
function shows good performance and outperforms known approaches in the
literature for the independent Grid scheduling.
2 Vilfredo Pareto, 1848-1923, Italian economist. He introduced the notion of Pareto-

optimality, the idea that a society is enjoying maximum ophelimity (economic sat-
isfaction) when no one can be made better off without making someone else worse
off.
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1.4 Heuristics and Meta-heuristics Methods for
Scheduling in Grids

From the exposition in the previous sections, it is clear that Grid scheduling prob-
lem is really challenging. Dealing with the many constraints and optimization
criteria in a dynamic environment is very complex and computationally hard.
Meta-heuristic approaches are considered undoubtedly the de facto approach.
Why meta-heuristics are useful for scheduling in Computational Grids? Follow-
ing we point out the main reasons that explain the strength of meta-heuristics
approaches for designing efficient Grid schedulers:

• Meta-heuristics are well-understood : there is a vast body of literature for
meta-heuristic approaches. Meta-heuristics have been studied for a large
number of optimization problems, from theoretical, practical and experi-
mental perspectives. Certainly, the known studies, results and experiences
with meta-heuristic approaches are a good starting point for designing meta-
heuristics based Grid schedulers.

• No “need” for optimal solutions : In Grid scheduling problem, for most prac-
tical applications, any scheduler delivering good quality planning of jobs
would suffice rather than searching for optimality. In fact, in highly dynamic
Grid environment, there is not possible to even define optimality of planning,
as it is defined in combinatorial optimization. This is so due to the fact that
Grid schedulers run as long as the Grid system exist and thus the perfor-
mance is measured not only for particular applications but also in the long
run. It is well-known that meta-heuristics are able to compute in short time
high quality feasible solutions. Therefore, in such situation meta-heuristics
are among best candidates to cope in practice with Grid scheduling.

• Efficient solutions in short time: the research work on meta-heuristics has
by large tried to find ways to avoid getting stuck in local optima and ensure
convergence to sub-optimal or optimal solutions. However, meta-heuristics
dispose of mechanisms that allow to “play” with the convergence speed. For
instance, in Genetic Algorithms, by choosing appropriate genetic operators
one can achieve a very fast convergence of the algorithm to local optima.
Similarly, in Tabu Search method, one can work with just short-term mem-
ory (recency) in combination with intensification procedure to produce high
quality feasible solutions in very short time. This feature of meta-heuristics
is very useful for Grid schedulers in which we might want to have a very fast
reduction in makespan, flowtime and other parameters.

• Dealing with multi-objective nature: Meta-heuristics has proven to efficiently
solve not only single objective optimization problems but also multi-objective
optimization problems as is the case of Grid scheduling.

• Appropriateness for periodic and batch scheduling: Periodic scheduling is a
particular case of Grid scheduling. It arises often when companies and users
submit their applications to the Grid system periodically. For instance, a
bank may wish to run once a month an application that processes the log
file keeping bank’s clients transaction activity with the bank online system.



24 F. Xhafa and A. Abraham

In this case suitable resource provisioning can be done in the Grid infrastruc-
tures and, which is more important in our context, there are no strong time
restrictions. This means that we can run meta-heuristics based schedulers
for longer execution times and increase significantly the quality of plan-
ning of jobs to resources. Similarly, in batch scheduling, we could run the
meta-heuristics based scheduler for the time interval comprised within two
successive batches activations.

• Appropriateness for decentralized approaches: Since Grid systems are ex-
pected to be large or very large scale, decentralization and co-existence of
many Grid schedulers in the system is desirable. We could thus have many in-
stances of the meta-heuristics based schedulers running in the system which
are coordinated by higher level schedulers.

• Hybridization with other approaches: Meta-heuristics can be easily hybridized
with other approaches. This is useful to make Grid schedulers to better re-
spond to concrete types of Grid infrastructures, specific types of applications
etc. The hybridization has in general shown to produce better solutions than
those delivered by single approaches; in fact, meta-heuristics are themselves
hybrid approaches.

• Designing robust Grid schedulers: The changeability of the Grid environment
over time is among the factors that directly influences the performance of the
Grid scheduler. A robust scheduler would be one that is able to deliver high
quality planning even under constant changes of the characteristics of the
Grid infrastructure such as changeability in heterogeneity of resources, of the
underlying interconnection networks, in heterogeneity of jobs, etc. Evidence
in meta-heuristics literature exist that in general meta-heuristic approaches
are robust.

• Libraries and frameworks for meta-heuristics: Since meta-heuristic approaches
are high level approaches, many libraries and frameworks have been developed
in the literature. For instance, Mallba library [1], Paradiseo [14] and Easy-
Local++ [45] are such libraries. These libraries can be easily used for Grid
scheduling problem; for instance, the meta-heuristic approaches in Xhafa et
al. [16,72,73] use skeletons defined in Mallba Library. It is worth to note that
libraries have been also developed for the meta-heuristics to deal with multi-
objective optimization case.

In the next subsections we briefly review most important heuristic and meta-
heuristic approaches and the benefits of using them for Grid scheduling problem
(the reader is referred to [31, 48] for a survey on meta-heuristic approaches).

1.4.1 Local Search Based Heuristic Approaches

Local search heuristics [39] is a family of methods that explore the solution space
by jumping from one solution to another one and constructing thus a path in
solution space with the aim of finding the best solution for the problem. Methods
in this family range from simple ones such as Hill Climbing, Simulated Annealing
to more sophisticated ones such as Tabu Search method.
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Simple local search methods (Hill Climbing-like) are of interest, at least, for
two reasons: (1) they produce a feasible solution of certain quality within very
short time; and, (2) they can be used to feed (initialize) population-based meta-
heuristics with genetically diverse individuals. Such methods has been studied
for the scheduling under ETC model in Ritchie and Levine [58]. Xhafa [68] used
several local search methods in implementing Memetic Algorithms for the same
problem.

Simulated Annealing (SA) is more powerful than simple local search by ac-
cepting also worse solutions with certain probability. This method has been
proposed for Grid scheduling problem by Abraham et al. [1] and Yarkhan and
Dongarra [75].

Tabu Search [32] is more sophisticated and usually requires more computation
time for computing good solutions. However, its mechanisms of tabu lists, as-
piration criteria, intensification and diversification make it very powerful search
algorithm. Abraham et al. [1] also considered Tabu Search as candidate solution
method for the problem. Ritchie [57] implemented the TS for the problem under
ETC model and used it in combination with ACO approach. Recently, Xhafa et
al. [74] has presented the design, implementation and evaluation of a full TS for
the scheduling problem under ETC model. The proposed TS approach showed
to outperform Ritchie’s approach for the problem.

Following we present the design of simple local search methods for Grid
scheduling problem and present some computational results for the problem
under ETC model. Makespan and flowtime objectives are considered for this
purpose.

Design of local search methods for Grid scheduling

Local search methods like Hill Climbing can be applied straightway to the Grid
scheduling problem. However, many variations of these methods can be designed
by considering different neighborhood structures and move types in order to
increase their performance. Indeed, many Hill Climbing versions are obtained by
defining appropriate neighborhood relationships. Moreover, different variations
are due to the order and the way in which neighboring solutions are visited.
For instance, if in each iteration the best neighboring solution is accepted, we
have the steepest descent version (in minimization case) and steepest ascent, in
maximization case.

• Move-based local search: In this group of methods, the neighborhood is fixed
by moving a task from one resource to another one. Thus, two solutions
are neighbors if they only differ in a position of their vector of assignments
task-resource. The following methods are obtained: (a) Local Move (LM):
moves a randomly chosen task from the resource where it was assigned to,
to another randomly chosen resource; (b) Steepest Local Move (SLM): moves
a randomly chosen task to the resource yielding the largest improvement; (c)
Local MCT Move (LMCTM): this method is based on the MCT (Minimum
Completion Time) heuristic. Here, a task is moved to the resource yielding
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the smallest completion time among all the resources; (d) Local Minimum
Flowtime Move (LMFTM): applies the movement of a randomly chosen task
that yields the largest reduction in the flowtime.

• Swap-based local search: In this group of methods, the neighborhood is fixed
by swapping two tasks of different resources. This group includes: (a) Lo-
cal Swap (LS): the resources of two randomly chosen tasks are swapped;
(b) Steepest Local Swap (SLS): the movement swap yielding the largest im-
provement is is applied; (c) Local MCT Swap (LMCTS): in this case, a
randomly chosen task t1 is swapped with a task t2 so that the maximum
completion time of the two implied resources is the smallest of all possible
exchanges; (d) Local MFT Swap (LMFTS): the exchange of the two tasks
yields the largest reduction in the value of flowtime; and, (e) Local Short
Hop (LSH): this method is based on the the process of Short Hop [7]. In our
case, pairs of resources are chosen one from the subset of the most loaded
resources and the other from the subset of the less loaded resources together
with the subset of tasks that are assigned to these resources. In each itera-
tion (hop) the swap of a task of a most loaded resource with a task assigned
to a less loaded resource is evaluated and accepted if the completion time of
the implied resources is reduced.

• Rebalance-based local search: load balancing of resources is used as a crite-
rion for the neighborhood definition. We can thus design: (a) Local Rebalance
(LR): the movement from a solution to a neighboring one is done by rebal-
ancing the most loaded resources; (b) Deep Local Rebalance (DLR): applies a
movement with the largest improvement in rebalancing; (d) Local Flowtime
Rebalance (LFR): the swap is done for a task from the most loaded resource
and a task of a resource that reduces the value of the flowtime contributed
by the most loaded resource; (e) Emptiest Resource Rebalance (ERR): in
this method the aim is to balance the workload of the resources but now the
less loaded resource are used as a basis; and, (f) Emptiest Resource Flowtime
Rebalance (ERFR): this is similar to the previous method but now the less
loaded resource is considered the one that contributes the smallest flowtime.

• Variable Neighborhood Search (VNS): in this method a generalized concept
of neighborhood is considered. More precisely, the neighborhood relationship
is defined so that two solutions are considered neighbors if they differ in k po-
sitions of their vectors of assignments task-resource, where k is a parameter.
This method in general could yield better solutions, however its computa-
tional cost is higher since the size of the neighborhood is much larger than
in the case of simple neighborhood (for k = 1, VNS is just the Local Move).

Computational results for local search methods (ETC model)

We exemplify the usefulness of the local search methods presented above through
their implementation for the independent Grid scheduling under ETC model (see
subsection 1.3.3).

For the purposes of this experimental study problem instances from ETC
model consisting of 512 jobs and 16 resources are used. The aim was to study
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Fig. 1.1. Comparison of makespan (in arbitrary time units) reductions obtained with
different local search procedures

the makespan reduction of different local search methods presented above (the
initial solution –staring point– of the local search was generated randomly). Since
local search methods are based on random decisions, 20 independent runs (of
500 iterations each) were performed on the same instance and the performance
evaluation is done based on averaged makespan values. We show in Figs 1.1 the
graphical representation of the makespan reduction for 11 of the local search
methods introduced above; the rest of them (LMFTS, SLS, SLM, ERFR) per-
formed worse and are omitted from the graph.

From Figs 1.1, we can see that: (a) all the considered local search methods
achieve a reduction of makespan in very short time; (b) the fastest reduction in
makespan is achieved by LR (Local Rebalance) although in the long run LM-
CTM (Local MCT Move) obtained better makespan reduction; (c) the method
ERFR (Emptiest Resource Flowtime Rebalance) based on flowtime reduction
performed poorly, which is expected since it tries to minimize flowtime, not the
makespan.

On the other hand we measured the makespan reduction of the VNS method
for k = 3 and k = 8. We show in Figs 1.2 the graphical representation of the
makespan reduction; we have also included in the graph the LR and LMCTM
methods for ease of comparison between VNS and simple local search methods
presented above.

From Fig. 1.2 we can see that VNS(18) achieves the fastest reduction of the
maksepan but is soon “stagnated” and VNS(3) performs better. This could
be explained by the fact that doing a considerable number of movements (8
movements in this case as compared to just three movements in VNS(3)) could
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Fig. 1.2. Comparison of makespan (in arbitrary time units) reductions obtained with
VNS(k) method for k = 3 and k = 8

damage the structure of the schedule. It is therefore suggestive to keep the value
of k small. It should also be noted that VNS, despite of being considered more
powerful method than simple local search, does not perform significantly better
than; in fact, LMCTM seems to perform better than VNS in the long run.

1.4.2 Population-Based Heuristic Approaches

Population-based heuristics is a large family of methods that has shown their effi-
ciency for solving combinatorial optimization problems. Population based meth-
ods usually require large running times if sub-optimal or optimal solutions are
to be found. However, when the objective is to find feasible solutions of good
quality in short execution times, as in case of Grid scheduling, we can exploit
the inherent mechanisms of these methods to increase the convergence rapidity
of the method.

We could distinguish three different categories of population-based meth-
ods: Evolutionary Algorithms (Genetic Algorithms (GAs), Memetic Algorithms
(MAs) and their variations), Ant Colony Optimization (ACO) and Particle
Swarm Optimization (PSO).

GAs for Grid scheduling problems have been addressed by Abraham et al. [1],
Braun et al. [9], Zomaya and Teh [81], Martino and Mililotti [46], Page and
Naughton [53], Carretero and Xhafa [16], Gao et al. [29], Xhafa et al. [70, 73].

MAs [49] is a relatively new class of population-based methods, which combine
the concepts of evolutionary search and local search by taking advantage of good
characteristics of both of them. In this sense MAs could be considered as hybrid
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evolutionary algorithms, in fact, MAs arose as an attempt to combine concepts
and strategies of different meta-heuristics. There has been few work on MAs
for Grid scheduling problem. Xhafa [68] applied unstructured MAs and Xhafa
et al. [71] proposed Cellular MAs (structured MAs) for the independent schedul-
ing problem under ETC model.

An ACO implementation for the problem under ETC model has been reported
by Ritchie [57]. Abraham et al. [3] proposed an approach for scheduling jobs on
Computational Grids using fuzzy PSO algorithm.

Specific methods for population initialization

In population-based methods, its is important to dispose a wide variety of ini-
tialization methods for the generation the first population. Typically, the initial
solutions are generated randomly, however, introducing a few genetically good
individuals would be helpful to accelerate the search. Thus, besides a random
method, other specific or ad hoc methods can be used to generate solutions,
among them, the ad hoc heuristics Opportunistic Load Balancing (OLB), Min-
imum Completion Time (MCT), Minimum Execution Time (MET), Switch-
ing Algorithm (Switch), K-percent Best (KPB), Min-min, Max-min, Suffer-
age, Relative-cost and Longest Job to Fastest Resource-Shortest Job to Fastest
Resource (LJFR-SJFR) [1, 9, 44, 67].

In [73], the LJFR-SJFR method was used for generating one individual (the
rest were generated through random perturbations, that is, by reassignment of
a subset of tasks). By monitoring some of the runs, we observed that our GA
spends roughly 55-70% of the total number of iterations to reach a solution of
the quality of Min-Min method, which is due to the fact that Min-Min performs
much better than LJFR-SJFR.

1.4.3 Hybrid Heuristics Approaches

Meta-heuristic methods are per se hybridized approaches. For instance, MAs
combine evolutionary search with local search. However, hybridization among
different meta-heuristics has shown to be effective for many problems by out-
performing single methods [63]. However, hybrid meta-heuristics have been less
explored for the problem. Abraham et al. [1] addressed the hybridization of GA,
SA and TS heuristics; the hybridization GA+SA is expected to have a better
convergence than pure GA search and GA+TS could improve the efficiency of
GA. In these hybridizations a heuristic capable to deal with a population of
solutions, such as GA, is combined with two other local search heuristics, such
as TS and SA, that deal with only one solution at a time. Another hybrid ap-
proach for the problem is due to Ritchie and Levine [57, 59] who combine an
ACO algorithm with a TS algorithm for the problem. In [68], a basic unstruc-
tured MA is combined with 16 local search algorithms in order to identify the
best performance of the resulting MA.
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1.4.4 Other Approaches

Many other approaches can be applied to Grid scheduling problem. We briefly
present them next.

Hyper-heuristic approaches

Hyper-heuristic approaches [9] are methods that guide the search, at a higher
level as compared to the meta-heuristics approaches, through other heuristic
methods for the resolution of optimization problems. Hyper-heuristics have
shown effective for scheduling and timetabling (Burke et al. [11]). Hyper-
heuristics can also be combined to design hybrid approaches for general schedul-
ing and timetabling problems [8, 10]. They are therefore candidate approaches
also for Grid scheduling problem.

Xhafa [69] presented a simple hyper heuristic for the problem, which uses as
underlying heuristics a set of ad hoc (immediate and batch mode) scheduling
methods to provide the scheduling of jobs to Grid resources according to the
Grid and job characteristics.

The hyper-heuristic is a high level algorithm, which examines the state and
characteristics of the Grid system (jobs and resources), and selects and applies
the ad hoc method that yields the best planning of jobs. The resulting hyper-
heuristic based scheduler can be thus used to develop network-aware applications
that need efficient planning of jobs to resources.

Reinforced learning

Some research work in the literature addressed the use of reinforced learning
techniques for scheduling in Grid systems. Perez et al. [55], proposed to im-
plement a Reinforcement Learning based scheduling approach for large Grid
computing systems. Vengerov [64] presented a utility-based framework for mak-
ing repeated scheduling decisions dynamically; the observed information about
unscheduled jobs and system’s resources is used for this purpose.

Fuzzy logic, neural networks and QoS approaches

Zhou et al. [80] used Fuzzy Logic techniques to design an adaptive Fuzzy Logic
scheduler, which utilizes the Fuzzy Logic control technology to select the most
suitable computing node in the Grid environment. A Fuzzy Neural Networks was
proposed by Yu et al. [77] to develop a high performance scheduling algorithm.
The algorithms uses Fuzzy Logic techniques to evaluate the Grid system load
information, and adopt the Neural Networks to automatically tune the mem-
bership functions. Hao et al. [35] presented a Grid resource selection based on
Neural Networks aiming at offering QoS on distributed, heterogeneous resources.
To this end, the authors propose to select Grid resources constrained by QoS
criteria. The resource selection problem is solved using a novel neural networks.

Chunlin and Layuan [20] proposed a joint QoS optimization approach to opti-
mize global QoS by adopting cross-layer design and information exchange among
multiple Grid layers.
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Economy-based scheduling

Economy-based models are important for the design of resource management
architecture for Grid systems. Several recent works [4,12,13,19,78] are addressing
the resource allocation through market-oriented approaches. These approaches
are suitable, on the one hand, to exploit the interaction of different scheduling
layers, and on the other, different negotiation and agreement strategies can be
implemented for resource allocation.

Grid services scheduling

W3C defined a service is a set of actions that form a coherent whole from the
point of view of service providers and service requesters. Although this defini-
tion originated for web systems, services were defined similarly for Grid systems.
There are two aspectes related to Grid scheduling and Grid services: (a) Grid ser-
vices need to be discovered and scheduled to appropriate resources; for instance,
scheduling a service in the Grid system to process a requested transaction; and
(b) achieving Grid scheduling functionalities through services. Several recent re-
search work [50,65,79] explore these aspects, yet there is still few research work
in this direction.

1.5 Further Issues

Besides the many aspects and facets of Grid scheduling problem presented in
the previous sections, there still remain other issues to be considered. We briefly
mention here the Grid security as an important aspect to be considered in Grid
scheduling. The security can be seen as a two-fold objective: on the one hand, a
task, a job or application could have a security requirement to be allocated in
a secure node, that is, the node will not “watch” or access the processing and
data used by the task, job or application. On the other hand, the node could
have a security requirement, that is, the task, job or application running in the
resource will not “watch” or access other data in the node.

It should be noted that current security approaches are treated at different
levels of Grid systems and independently of the Grid schedulers. It is challenging
to incorporate the security/trust level as one of the objectives of the scheduling
by using trust values that span from very trustworthy to very untrustworthy
scale. Moreover, one of the aims to pursue here is to reduce the possible overhead
to the Grid scheduler and to the overall system that would introduce a secure
scheduling approach.

1.6 Conclusions

In this Chapter, we have reviewed the most important concepts from Grid com-
puting related to scheduling problems and their resolution using heuristic and
meta-heuristic approaches. After introducing a few important Grid types that
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have appeared in the Grid computing domain, we identify different types of
scheduling based on different criteria, such as static vs. dynamic environment,
multi-objectivity, adaptivity, etc. Our exposition aims to reveal the complexity of
the scheduling problem in Computational Grids when compared to scheduling in
classical parallel and distributed systems and shows the usefulness of heuristics
and meta-heuristics approaches for the design of efficient Grid schedulers. We
have reasoned about the importance and usefulness of meta-heuristic approaches
for the design of efficient Grid schedulers when considering the scheduling as a
multi-objective optimization problem. Also, a few other approaches and current
research issues in the context of Grid scheduling are discussed.
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39. Hoos, H.H., Stützle, Th.: Stochastic Local Search: Foundations and Applications.
Elsevier/Morgan Kaufmann (2005)

40. Kondo, D.: Scheduling Task Parallel Applications for Rapid Turnaround on Desk-
top Grids. Doctoral Thesis, University of California at San Diego (2005)

41. Kondo, D., Chien, A., Casanova, H.: Scheduling Task Parallel Applications for
Rapid Turnaround on Enterprise Desktop Grids. Journal of Grid Computing 5(4),
379–405 (2007)

42. Lee, L., Liang, C., Chang, H.: An Adaptive Task Scheduling System for Grid Com-
puting. In: Proceedings of the Sixth IEEE international Conference on Computer
and information Technology (CIT 2006), September 20-22, p. 57. IEEE Computer
Society, Washington (2006)

43. Linderoth, L., Wright, S.J.: Decomposition algorithms for stochastic programming
on a computational grid. Computational Optimization and Applications (Special
issue on Stochastic Programming) 24, 207–250 (2003)

44. Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic map-
ping of a class of independent tasks onto heterogeneous computing systems. Journal
of Parallel and Distributed Computing 59(2), 107–131 (1999)

45. Di Gaspero, L., Schaerf, A.: EasyLocal++: an object-oriented framework for
the flexible design of local search algorithms and metaheuristics. In: 4th Meta-
heuristics International Conference (MIC 2001), pp. 287–292 (2001)

46. Di Martino, V., Mililotti, M.: Sub optimal scheduling in a grid using genetic algo-
rithms. Parallel Computing 30, 553–565 (2004)

http://www.cs.huji.ac.il/labs/parallel/workload/


1 Meta-heuristics for Scheduling in Grid systems 35

47. Lee, Y.C., Zomaya, A.Y.: Practical Scheduling of Bag-of-Tasks Applications on
Grids with Dynamic Resilience. IEEE Transactions on Computers 56(6), 815–825
(2007)

48. Michalewicz, Z., Fogel, D.B.: How to solve it: modern heuristics. Springer, Heidel-
berg (2000)

49. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Technical report No. 826, California Institute
of Technology, USA (1989)

50. MacLaren, J., Sakellariou, R., Krishnakumar, K.T., Garibaldi, J., Ouelhadj, D.:
Towards Service Level Agreement Based Scheduling on the Grid. In: Workshop on
Planning and Scheduling for Web and Grid Services (held in conjunction with the
14th International Conference on Automated Planning and Scheduling (ICAPS
2004)), Canada (2004)

51. Newman, H.B., Ellisman, M.H., Orcutt, J.A.: Data-intensive e-Science frontier
research. Communications of ACM 46(11), 68–77 (2003)

52. Othman, A., Dew, P., Djemame, K., Gourlay, K.: Adaptive Grid Resource Broker-
ing. In: IEEE International Conference on Cluster Computing (CLUSTER 2003),
p. 172 (2003)

53. Page, J., Naughton, J.: Framework for task scheduling in heterogeneous distributed
computing using genetic algorithms. AI Review 24, 415–429 (2005)
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