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Abstract

This study is concerned with the application of
multi-objective particle swarm optimization (MOPSO)
approaches to the framework of collaborative fuzzy
clustering. In particular, the emphasis lies in deter-
mining the collaboration matrix between the data
repositories. By using fitness functions both at the level
of data and information granules, we can provide a
more effective way of reconciling the findings between
the participating data sites. A practical application
of the proposed methodology to marketing research is
presented.

1. Introduction

The success of Granular Computing [1] as a cru-
cial paradigm for driving nowadays’ data mining ap-
proaches can also be witnessed in clustering tech-
niques. In recent years, several appealing clustering
methods have emerged which no longer rely on data
patterns to conduct the underlying optimization process
but on information granules instead [2].

One of such approaches is collaborative fuzzy clus-
tering [3][4] which can be envisioned as a collective
machinery of knowledge discovery among several data
sites. The key features of this innovative methodology
are: (1) the exchange of information granules between
the sites, as several restrictions owing to privacy or
security issues are enforced over the real data, pre-
venting them from being shared and (2) the local opti-
mization realized at each data site becomes cognizant
of the knowledge structures (clusters) uncovered at
the remaining repositories and actively considers them
throughout the collaborative scheme.

In order to obtain a suitable ensemble of collabo-
rative activities leading to an overall description of
the distributed data, one has to carefully regard the
intensity of the collaboration α[ii, jj] between every
pair of data repositories ii and jj. Several authors
[5][6] have proposed some techniques to determine
the collaboration matrix. In [6], the authors use the
original similarity between the clusters at different data
sites as the basis for determining the collaboration
links whereas in [5], a two-step approach is presented.
First, the collaboration is restricted to a subset of the
available data sites, which is highly beneficial to lessen
the potential communication overhead. Secondly, the
very popular Particle Swarm Optimization (PSO) meta-
heuristic [7] is used to further optimize the collabora-
tion matrix in terms of a single quantitative function
aiming at evaluating the quality of the collaborative
scheme. Yet from the experiments carried out stemmed
the need for ending up with a more balanced α matrix
by taking into account further criteria.

This paper presents the application of multi-
objective PSO-based (MOPSO) approaches to the do-
main of collaborative fuzzy clustering. By considering
several fitness functions expressing the quality of the
collaboration realized, it is possible to know in ad-
vance how strongly the findings coming from other
repositories will impact local data. The real meaning
of this interaction is portrayed in terms of customer
satisfaction analysis.

The most prominent features of collaborative clus-
tering and its quantification are the subjects addressed
in Sections 2 and 3, respectively whereas a concise
outline of MOPSO approaches is offered in Section
4. Next, our proposal for learning the collaboration
links from a new standpoint follows. Empirical results



and discussions can be found at Section 6 while
conclusions finish the paper.

2. Collaborative Fuzzy Clustering

In 2002, Pedrycz [3] introduced a novel cluster-
ing algorithm, called Collaborative Fuzzy Clustering,
which intended to reveal the overall structure of dis-
tributed data (i.e. data lying at different repositories)
but, at the same time, complying with the restrictions
preventing data sharing. It can be stated that this
approach exhibits significant differences with other
existing techniques under the umbrella of distributed
clustering [4]. One can envision two types of collabo-
rative clustering, namely, the horizontal mode and
the vertical mode. In the first approach, each data
site contains the same patterns split across different
feature spaces, while in the latter approach, all data
sites are described by the same feature space and
different subsets of patterns are stored in separate
locations. While this article focusses on the horizontal
collaborative clustering scheme, the ideas presented
here can be extended to the vertical fashion.

The collaborative clustering scheme first performs
a local clustering analysis at the level of individual
data sites, then proceeds to exchange and reconcile
the knowledge structures (partition matrices and/or
cluster prototypes) acting as information granules un-
til some termination criteria is met. Any objective-
function based clustering algorithm can be used as the
granulation source. The augmented objective function,
guiding the optimization process, can be written as
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The same notation as Pedrycz [3] is used. Here
uik[ii] represents the membership degree of the kth

pattern to the ith cluster in data site ii and dik[ii]
representing the distance of the kth pattern to the
centroid of the ith cluster in the iith data site. The
strength of collaboration between two data sites is
expressed by the collaboration link α[ii, jj]. Finally,
P , N and c stand for the number of data sites, the
number of data patterns and the number of clusters
respectively. The second term of Eq. 1 augments the
standard FCM’s objective function and realizes the
communication between the data site at the level of

information granules, i.e. partition matrices, instead of
data patterns.

The full collaborative scheme starts with a standard
FCM analysis performed at each data site, which
provides the initial centroids and membership degrees.
Next, the full augmented objective function is used at
each data site, receiving the membership information
from the other data sites from the previous step. This
final step is repeated until some convergence criteria
are met. For full technical details, the reader is referred
to [3].

3. Quantifying the Collaboration Effect

The collaboration effect between the different data
sites, can be assessed in different ways. Firstly, the
original cluster prototypes (centroids) computed lo-
cally and the corresponding partition matrices will shift
because of the collaboration. Secondly, the similarity
between the set of clusters at at each data site will in-
crease. Therefore, to quantify the collaboration effect,
we will apply two different measures, each measuring
one of the two aspects described above.

The first measure [3] compares the membership
degrees of each data pattern k to each clusters i before
(uik[iiref ]) and after (uik[ii]) the collaboration. The
overall impact on the partition matrices in a specific
data site ii is expressed as

Δ[ii] =
1
N

N∑

k=1

c∑

i=1

uik[ii] − uik[iiref ]. (2)

The average collaboration effect on the membership
degrees for all data sites can then be computed as
in Eq. 3. A significant variation in the membership
degrees for each data site before and after the col-
laboration (high value of Δ) translates into a stronger
collaborative impact.

Δ =
1
P

P∑

ii=1

Δii. (3)

The second measure has to do with the quantifica-
tion of the similarity of the final clustering outcome
across the various data sites by looking at the cluster
differences in terms of the memberships of patterns
to clusters. Although it shows some resemblance with
the similarity concept in [6], it is a completely new
one. To come up with a measure of dissimilarity
we redefine a cluster Ci[ii] as a set of membership
degrees {u1i[ii], · · · , uNi[ii]}. Now we can express
the dissimilarity between cluster i from data site ii
and cluster j from data site jj as follows:



d(Ci[ii], Cj [jj]) =
1
N

N∑

k=1

|uik[ii] − ujk[jj]|. (4)

This dissimilarity measure will become zero, which
is the lower bound, when all patterns belong to both
clusters with the same degree. On the other hand, it will
become equal to 1, which is the upper bound, when
both clusters are crisp and don’t have any pattern in
common. Furthermore, this measure is also symmetric.
Next, to measure the dissimilarity between the entire
cluster solution of data site ii and data site jj, we
compare each cluster of data site ii with each cluster of
data site jj and only consider the smallest dissimilarity
for each cluster (cf. Eq. 5). Note that this measure
is also symmetric and equals to 0 when both cluster
solutions are identical.
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c
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The final measure, which we will term as ρ, can
be envisioned as the mean dissimilarity of the cluster
solutions across all data sites.
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2
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4. Multi-Objective Particle Swarm Opti-
mization

For the sake of brevity, we assume the reader
is familiar with the fundamentals of multi-objective
optimization [8]. When it comes to have the PSO
algorithm guide the optimization scheme, one finds
that the single global best solution in one-objective
optimization is replaced by a set of optimal, mutually
non-dominated solutions (Pareto Front) and picking the
local and global bests for every particle in the swarm
is troublesome.

Most successful approaches in literature consider
maintaining a bag (elite archive) where the non-
dominated solutions are stored as particles move
throughout the search space and from which the parti-
cle’s local and global bests are selected. Pruning this
archive becomes a must as its size turns unmanageable
for the application unless this detrimental effect can be
somehow circumvented.

We would like to consider a recent MOPSO ap-
proach for the experiments to come. Abido’s novel
elitist algorithm [9] maintains a population of particles
and three elite archives. As soon as each particle runs

into a non-dominated solution, it is added to its local
best repository. The set of all Pareto-optimal solutions
found by all particles in an iteration is kept in a
second archive which, in turn, is dumped into a (larger)
file containing the Pareto Front found so far by the
algorithm. Should any of the archives exceed some
predefined thresholds, it is trimmed by a clustering-
driven approach. On the other hand, a particle’s local
and global best solutions are drawn from the local
and global best archives, respectively, chosen as the
individuals having the minimal distance between the
two subpopulations.

Fieldsend and Singh [10] overcame the limitation
imposed by pruning the elite archive by devising an
efficient data structure, called “dominance tree” which
allows to easily retrieve the global best for any particle.
While still both local and global best repositories are
in place, browsing across the latter one is very simple.
Linear lists are used to store locally estimated solutions
for the particles, with uniform selection of the local
best.

5. Learning Collaboration Matrix with
MOPSO

MOPSO approaches are a suitable way for learning
the collaboration matrix in a collaborative fuzzy clus-
tering scenario, for they can simultaneously consider
several prospective solutions (particles) which, in turn,
strive to achieve a balance between different criteria
deemed as desirable for the ensuing granulation-driven
optimization scheme. The same ideas put forward in
[5] can be borrowed but this time having each particle
optimize the vector F = (−Δ, ρ). The flexibility
of this rationale is easily demonstrated by the fact
that (1) we are not tied to any particular MOPSO
implementation and (2) other quantitative functions
aimed at estimating the quality of the collaborative
clustering can also be incorporated to the previous
vector. As an outcome, we will end up with a set of
mutually non-dominated solutions (Pareto Front) from
which we may draw, under some specific criteria, the
individual solution that best fits our needs.

Algorithm 1 displays the breakdown of activities
included in our proposal.

Achieving a suitable collaboration matrix which
leads to a better reconciliation of the different knowl-
edge structures requires several steps. The data patterns
in each data site D[ii] are locally optimized by any
clustering vehicle (FCM, for example). Next, we might
choose to limit the collaborative interaction between
the repositories only to those sites for which it is
expected a meaningful result (line 2, see [5]).



Algorithm 1 A MOPSO-based proposal for a balanced
α determination

1: Perform local optimization in each data site D[ii]
2: Initialize the α matrix
3: repeat
4: for each particle xi in the swarm do
5: Run the collaborative clustering
6: Evaluate the fitness function vector F
7: Select local and global best individuals
8: Update velocity vi and position xi

9: Update local best archive
10: end for
11: Update global best archive
12: until some termination criterion is fulfilled
13: Output the set of non-dominated solutions (Pareto

Front)
14: Pick a collaboration matrix α out of the Pareto

Front

Now we configure the MOPSO approach we had
previously chosen and encode each particle to rep-
resent a collaboration matrix. One of the particles is
initialized with the α matrix from the previous step. All
of the individual prospective solutions are to conduct
the full collaborative stage by using their α matrix.
This stage finishes when no significant changes in
some internal consistency measure are observed. Then,
the quality of the resultant collaboration is estimated
by means of several functions which also play the role
of fitness functions and are to be optimized as a whole.

Lines 7–9 display the traditional behavior of a
MOPSO algorithm and are concerned with selecting
somehow the local and global best individuals for
each particle in the swarm. The introduction of elitist
approaches has led to increasingly good results but
with an associated computational cost which might not
be always overcome. Once this is done, the particles’
position and velocity are updated according to the
conventional rules in this sort of procedures and the
local best file of the particle is updated too.

The termination criterion in line 12 often relies upon
reaching a specified number of iterations. Each of them
performs an update over the global best archive (Pareto
Front), which is the final outcome of all MOPSO ap-
proaches. For selecting one solution out of the bunch of
potential individuals, one may lean on expert criterion
tied to the application domain or apply more refined
heuristics to end up with the desired solution.

6. Empirical Results

6.1. Data Description

The data used for our experiments comes from a
customer satisfaction survey performed in the family
entertainment sector. Customers were asked to rate
the performance of 54 attributes of an offering com-
prising four products, on scales from 1 [Low] to 10
[High]. The attribute performances were grouped into
9 dimensions and the customers also had to indicate
how satisfied they were with the offering for each
dimension on a scale from 1 [Low] to 10 [High]. In
total, 666 respondents completed the survey entirely
and were retained for our experiments. Finally, for
this experiment, the original data set was divided into
9 different data sets, one for each dimension, each
representing a single data site.

Table 1. Attribute Dimensions.

Attribute dimension Number of attributes

Service 9

Product A 7

Product B 4

Quality 8

Product C 6

Product D 3

Staff 5

Prices 7

Communication 5

6.2. Experiments and Discussion

Given the context of customer satisfaction and the
fact that all attributes measure performance or satisfac-
tion from a “low-to-high” scale, we considered both 2-
or 3-cluster models. Both a two-cluster analysis and a
three-cluster analysis were completed by using Abido’s
MOPSO with the following parameters: 50 particles,
100 iterations, c1 = c2 = 2, inertia weight dynamically
varied from 1.4 to 0.4.

To select the optimal number of clusters, we studied
the interpretation of the two- and three-cluster models.
Several cluster models from each Pareto Front were
selected and their cluster prototypes for each data site
were analyzed by means of a profile chart. Figures 1
and 2 show such plots for the quality dimension for
a two- and three-cluster model, respectively. For the
3-cluster solution, there is only a small negligible dif-
ference between cluster 1 and 2 (cf fig. 2). This makes
it very difficult to give a meaningful but different
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Figure 2. Quality Dimension: 3 clusters

interpretation to both clusters. The 2-cluster solution
shows a similar structure, but consolidates clusters 1
and 2 from the 3-cluster solution into a single cluster
(cf fig. 1). Given the small difference between these
two clusters in the 3-cluster model, only little informa-
tion is lost from this consolidation. The 2-cluster solu-
tion also provides a much easier interpretation of the
clusters. It separates customers into “medium quality
performance/satisfaction” customers and “high quality
performance/satisfaction” customers. Remarkably, the
same discussion also holds for the other dimensions.
The 3-cluster solution always contains two clusters
which are very close to each other in the feature space
and the 2-cluster model consolidates these two clusters,
thereby providing a more meaningful interpretation of
the remaining clusters. Therefore, we shall continue to
focus on the 2-cluster models.

Figure 3 shows the Pareto Front of the non-
dominating 2-cluster solutions. Each particle represents
a collaboration matrix. In total, 15 non-dominating
solutions were found. The next problem is to select a
single solution from this Pareto Front. As mentioned in
section 5, this can be done by using expert knowledge
or a refined heuristic. Because the number of non-
dominating solutions is rather limited, we prefer to use
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Figure 3. Pareto Front

expert knowledge to select the optimal cluster solution.
From a practitioner’s point of view, this approach often
provides the most interesting and meaningful results,
but isn’t always feasible.

A first analysis of all 15 cluster solutions showed
that they all revealed the same structure. The profiles
of the prototypes almost never intersected, similar
to fig. 1. The parallel profiles indicated that two
types of customers could be revealed in each di-
mension: the “medium performance/satisfaction” cus-
tomers and “high performance/satisfaction” customers.
Thus, based on the revealed structure and the interpre-
tation of the clusters, no solution can be preferred over
the other ones.

Next, we used two different criteria to determine
the best cluster solutions: i.e. the average distance be-
tween the prototypes within each dimension (data site)
(discernibility) and the crispness of the clusters found.
The average distance between two prototypes within
one dimension is measured by taking the average ab-
solute difference across all attributes. Next, the average
distance between two prototypes were averaged across
the 9 dimensions. The crispness of the clusters is
quantified using the entropy criterion ([11], [12]) (cf
eq. 7), with the convention that uik ln(uik) = 0 if
uik = 0. In case of crisp clusters the criterion equals
to 1 and for the worst case clustering, the value of the
criterion is 0.

I(c) = 1 −

N∑

k=1

c∑

i=1

uik ln(uik)

N ln(1/k)
(7)

Figure 4 shows that the 8th non-dominating solu-
tion provides the crispest clusters with the greatest
average distance between the prototypes. Analyzing
this particular cluster solution provides two interesting
insights for marketeers. Firstly, it provides an easy
and useful segmentation of the market into “medium
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Figure 4. Discernibility and crispness of clusters
for all 15 non-dominating solutions

performance/satisfaction” customers and “high perfor-
mance/satisfaction” customers. Furthermore, the low
value of ρ indicates that this segmentation is quasi
equal in all nine dimensions, i.e. customers belong
with the same membership degree to the same cluster
across all nine dimensions. Secondly, the collaboration
links themselves also provide interesting marketing
information. Most collaboration links are very high,
which indicates that much collaboration is needed to
achieve clusters with the same composition across the
nine dimensions. However, most interesting are the few
data sites among which the collaboration link was zero,
which indicates that these dimensions automatically
have more or less the same cluster composition. For
example, this was the case between dimension “Ser-
vice” and “Product A”.

7. Conclusions

We have addressed the problem of determining a
suitable ensemble of collaboration links in a collabo-
rative fuzzy clustering setting from the standpoint of
a multi-objective optimization problem. The model
proposed relies on any MOPSO implementation and
encodes each particle as a particular collaboration
matrix α.

Moreover, the fitness functions used here have to
do with the evaluation of the clustering scheme and
are able to describe the phenomenon of collaboration
from diverse perspectives, i.e. by measuring the po-
tential impact of the collaborative activities via cluster
prototypes and partition matrices in each data site and
also by looking at the cluster composition over the
entire suite of data repositories after the collaboration.
This leads to obtaining more balanced collaboration
links which can better reflect the way in which findings
are to be reconciled between the different knowledge
structures.

The experimental section focused on the application
of this proposal to marketing research, particularly in
customer satisfaction problems. Criteria coming from
the application domain allowed to select the most
promising collaboration matrix so as to rule the col-
laboration between the nine available data repositories
holding customer information.

The ideas put forward in this article can be ex-
tended in an straightforward manner to target other
well-known evolutionary approaches such as Genetic
Algorithms.
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