
Hybrid Fuzzy-Genetic Algorithm Approach for Crew Grouping

Hongbo Liu, Zhanguo Xu
Department of Computer

Dalian University of Technology, Dalian, China
lhb@dlut.edu.cn

Ajith Abraham
School of Computer Science and Engineering

Chung-Ang University, Seoul, Korea
ajith.abraham@ieee.org

Abstract

Crew grouping is an important problem and formulating
a good solution always involves many challenges. For ex-
ample, grouping soldiers intelligently to tank combat units,
we should take into consideration the combined technical
proficiency of the soldiers, the amount of military training,
the units from which the soldiers come, their service age,
personal background, etc. In this paper, we propose a hy-
brid Fuzzy-Genetic Algorithm (FGA) approach to solve the
crew grouping problem. Fuzzy logic based controllers are
applied to fine-tune dynamically the crossover and muta-
tion probability in the genetic algorithms, in an attempt to
improve the algorithm performance. The FGA approach
is compared with the Standard Genetic Algorithm (SGA).
Empirical results clearly demonstrates that while the SGA
approach gives satisfactory solutions for the problem, the
FGA method usually performs significantly better.

1. Introduction

The solution to crew grouping always involves many fac-
tors. For grouping soldiers efficiently to tank combat units,
we should take into consideration the combined technical
proficiency of the soldiers, the amount of military train-
ing, the units from which the soldiers come, their service
age, personal background, etc. Genetic algorithms (GAs)
are particularly suited for obtaining approximate solutions
for multi-variable optimization problems where mathemat-
ical analysis are difficult [1, 2]. They are inherently paral-
lel, since the search for the best solution is performed over
data structures that can represent a number of possible solu-
tions. In this paper, we investigate the use of a fuzzy logic
controller to dynamically fine-tune the crossover and muta-
tion probability of a standard genetic algorithm for the crew
grouping problem. The structure of this paper is as follows.
We describe briefly the problem of crew grouping soldiers
into tank combat units in Section 2. We design our algo-
rithms for the problem in Section 3. Experiment results and

discussions are provided in Section 4. Finally, we conclude
our work in the paper.

2. Problem Statement and Modeling

The armored cavalry consists partly of a number of
tanks, each a basic, self-contained combat unit. The tank
commander, the gunner, the driver and the loader, all in-
dispensable, make up the tank’s crew. For maximum battle
effectiveness, we should consider the following factors:
1. The combined technical proficiency of the soldiers:The
assignment of soldiers to tank units must take into consider-
ation the different professional achievement levels of indi-
vidual members, and strive for the combined technical pro-
ficiency of the crew as a whole.
2. Amount of military training:The more military train-
ing a solider has, the more experienced he becomes. This
enhances his ability to respond to real battlefield situations.
Such soldiers should be assigned evenly among tank crews
so that their experience benefits more.
3. Unit: There is a period of learning to work together when
soldiers from different units carry out a battle task. They
must adapt and cooperate. Therefore, it is better to assign
soldiers from the same unit to the same tank crew.
4. Service age:There is more service age spread in the
armored cavalry than that in others. We assign soldiers with
different service ages into the same crew if possible, so that
the new soldiers can learn from the old.
5. Personal background:Soldiers with similar personal
background communicate with each other better. They
should be assigned to the same tank crew if possible.

Based on the above analysis, the problem can be mod-
eled as follows:

Gi = (Ci +Di +Gi +Li)×pi1×pi2×pi3×pi4×pi5 (1)

whereGi, Ci, Di, Gi, Li are the battle effectiveness of
the ith crew, theith tank commander, theith driver, theith
gunner, theith loader, respectively.pi1, pi2, pi3, pi4, pi5 are
theith unit exchanging coefficients, which is determined by



the combined technical proficiency of the soldiers, amount
of military training, unit, service age, personal background,
respectively. So system theory states that the whole is larger
than the sum of the parts, there

pi1 × pi2 × pi3 × pi4 × pi5 ≥ 1 (2)

For the problem of grouping soldiers to tank combat
units, we have to solve the objective function:

f(x) = max
n∑

i=1

Gi (3)

If we assignn commanders,n drivers,n gunners,n load-
ers forn tanks, the number of permutation and combination
will be (n!)3.

3. Algorithm Design

In this section, we design genetic algorithms to solve the
problem outlined above. The standard genetic algorithm
(SGA) is a useful optimization algorithm in a wide vari-
ety of circumstances [3]. However, one of its features is
a tendency for all of the population to converge to a sin-
gle solution which is suboptimal. If all the members of the
population are very similar, the crossover operator has little
function and mutation turns out to be the primary operator.
This effect is known as premature convergence [4]. Adap-
tive genetic algorithms, which dynamically adapt selected
control parameters or genetic operators during the evolu-
tion, have been built to avoid the premature convergence
problem and improve GA behaviour. One of the adaptive
approaches is the parameter setting techniques based on the
use of fuzzy logic controllers (FLCs), the fuzzy genetic al-
gorithm (FGA) [5].

3.1. Mapping the Problem Space

1. Encoding scheme:GAs work with a population of chro-
mosomes, each of which can be decoded into a solution
of the problem. Encoding scheme in genetic algorithm is
the basis of its development, which directly affects the con-
struction of genetic operators and performance of genetic
algorithm. Real-coded scheme is used in our model. A ma-
trix describes the structure of the model. The change of
its node implies different soldier is assigned. As an ex-
ample, for tank commanderNo.1, the information to be
coded in the GAs is 10000001. Similarly, the driverNo.1
is 20000001, the gunner is 30000001, and the loader is

40000001. For example, a solution for six tanks is



10000006 20000005 30000002 40000001
10000005 20000001 30000003 40000005
10000004 20000004 30000001 40000003
10000003 20000002 30000007 40000006
10000001 20000006 30000004 40000008
10000002 20000007 30000008 40000004




2. Initial population: An initial population is created from
a random selection of solutions. Note that the number of
troops within the four kinds of soldiers usually is not equal.
For example, there may be 6 tank commanders, 7 gunners, 8
drivers, and 9 loaders, to be assigned to 6 tank crews. Every
soldier within a kind has the same chance to join any crew.
3. Fitness function:During the search procedure, each indi-
vidual is evaluated using the fitness function. Our objective
is to maximize battle effectiveness. So in our algorithm the
fitness function is defined as Equations (1) and (3).
4. Selection:For selection, two individuals are randomly
chosen from the population and they form a couple for
crossover. Selection can be based on different probability
distributions, such as uniform distribution or a random se-
lection from a population where each individual is assigned
a weight dependent on its fitness, so that the best individ-
ual has the greatest probability to be chosen. We order the
individuals of the population according to their fitness val-
ues. The selection probability for the individuals is a linear
distribution.
5. Crossover:The crossover operator generates new chro-
mosomes. Crossover is usually applied to selected pairs of
parents with a probability equal to a given crossover rate.
In our algorithms, the idea behind a crossover operation is
as follows: it takes as input 2 individuals, selects a ran-
dom point, and exchanges the column behind this point as
a whole. It avoids effectively unfeasible solution during
crossover. It means any soldier couldn’t be assigned into
different crew at the same time. To illustrate this idea, we
consider two individuals A and B. Then, a crossover be-
tween them at point 2 may result in offsprings C and D as
illustrated below.

A =




10000006 20000005 30000002 40000001
10000005 20000001 30000003 40000005
10000004 20000004 30000001 40000003
10000003 20000002 30000007 40000006
10000001 20000006 30000004 40000008
10000002 20000007 30000008 40000004




B =




10000005 20000005 30000004 40000007
10000003 20000007 30000002 40000003
10000006 20000004 30000007 40000002
10000004 20000006 30000008 40000008
10000001 20000003 30000006 40000005
10000002 20000002 30000003 40000004






C =




10000006 20000005 30000002 40000001
10000005 20000007 30000003 40000005
10000004 20000004 30000001 40000003
10000003 20000006 30000007 40000006
10000001 20000003 30000004 40000008
10000002 20000002 30000008 40000004




D =




10000005 20000005 30000004 40000007
10000003 20000001 30000002 40000003
10000006 20000004 30000007 40000002
10000004 20000002 30000008 40000008
10000001 20000006 30000006 40000005
10000002 20000007 30000003 40000004




6. Mutation: The mutation operation modifies an individ-
ual. In defining the mutation operator, we take into ac-
count the domain type of an attribute. We consider two
important situations: The individual must be a feasible solu-
tion. Those soldiers who didn’t take part in the assignment
process in the last generation are as much as possible ex-
changed into the group of new individuals. For example,
new soldiers of the same kind are added into the end of the
list as gene A before mutation. If the mutation points 3 and
7 are selected, the result of the mutation operation results in
gene B as depicted below.

30000002 30000002
30000003 30000003
30000001 30000005
30000008 30000008
30000004 −→ 30000004
30000007 30000007
30000005 30000001
30000006 30000006
gene−A gene−B

7. End criterionIf the termination criterion (statistical or
temporal) is not satisfied, then a return is made to the third
step; otherwise, the algorithm is terminated. The criterion
is usually a sufficiently good fitness, or a maximum number
of iterations, or the global best fitness is steady-going within
determinated iterations.

3.2. Genetic Algorithm Parameter Control Based
on Fuzzy Logic

The performance of the genetic algorithm is correlated
to directly with its careful selection of parameters. It is
possible to destroy an high fitness individual when a large
crossover probability is set. The performance of the algo-
rithm would fluctuate significantly. For a low crossover

Figure 1. Generic structure of an FLC.

Figure 2. Structure of a fuzzy GA based on
FLCs.

probability, sometimes it is hard to obtain better individu-
als and does not guarantee faster convergence. High muta-
tion introduces too much diversity and takes longer time to
get the optimal solution. Low mutation tends to miss some
near-optimal points. The use of fuzzy logic controllers to
adapt genetic algorithm parameters is useful to improve the
genetic algorithm performance [6]. An FLC is composed
by a knowledge base, that includes the information given by
the expert in the form of linguistic control rules, a fuzzifi-
cation interface, which has the effect of transforming crisp
data into fuzzy sets, an inference system, that uses them to-
gether with the knowledge base to make inference by means
of a reasoning method, and a defuzzification interface, that
translates the fuzzy control action thus obtained to a real
control action using a defuzzification method. The generic
structure of an FLC [7] is shown in Figure 1.

Applications of FLCs for parameter control of GAs are
to be found in [8]. The main idea is to use an FLC whose
inputs are any combination of GA performance measures
or current control parameters and whose outputs are GA
control parameters. Current performance measures of the
GA are sent to the FLCs, which computers new control pa-
rameters values that will be used by the GA. In our FGA
approach, the crossover probability and the mutation prob-
ability are defined on specific individuals of the population
using several FLCs that take into account fitness values of
individuals and its distances. The next subsections present
the design of the FLC that adapts the crossover probability
Pc and the mutation probabilityPm.

Our strategy for updating the crossover and mutation



Figure 3. Membership functions. (a) for e1, (b)
e2, (c) for ∆Pc(t).

probabilities is to consider the changes of the maximum fit-
ness and average fitness in the GA population of two con-
tinuous generations. The occurrence probabilities would
be increased if it consistently produces a better offspring
during the recombination process; however,Pc would be
decreased andPm increased whenfave(t) approaches to
fmax(t) or fave(t− 1) approaches tofave(t). This scheme
is based on the fact that it encourages the well-performing
operators to produce more offspring, while also reducing
the chance for poorly performing operators to destroy the
potential individuals during the recombination process. The
FLC proposed has two inputs: A two-dimension FLC sys-
tem is used in our GA, in which there are two parameterse1

ande2:

e1(t) =
fmax(t)− fave(t)

fmax(t)
(4)

e2(t) =
fave(t)− fave(t− 1)

fmax(t)
(5)

where
t is timestep,
fmax(t) is the best fitness at Iterationt,
fave(t) is the average fitness at Iterationt,
fave(t) is the best fitness at Iterationt,
fave(t− 1) is the average fitness at Iteration (t-1).
The membership functions are shown in Figure 3, where

NL is Negative large,NS is Negative small,ZE is Zero,
PS is Positive small,PL is Positive large. The inputs of the
mutation FLC are the same as those of the crossover FLC.
But the membership function for∆Pm(t) was scaled by

Table 1. Fuzzy rules for crossover operation
(∆Pc(t)).

e2

e1 NL NS ZE PS PL
PL NS ZE NS PS PL
PS ZE ZE NL ZE ZE
ZE NS NL NL NL NL

Table 2. Fuzzy rules for mutation operation
(∆Pm(t)).

e2

e1 NL NS ZE PS PL
PL PS ZE PS NS NL
PS ZE ZE PL ZE NS
ZE PS PL PL PL PS

10%. Fuzzy rules describe the relation between the inputs
and output. Tables 1 and 2 show the Rule-Base used by the
FLCs presented. For the parameter control in our GAs, the
outputs∆Pc(t) and∆Pm(t) of fuzzy logic controllers are
translated the fuzzy control action thus obtained to a real
control action. Center of gravity [9] is used as our defuzzi-
fication method. Then we use the crisp value to modify the
parametersPc andPm as follows:

Pc(t) = Pc(t− 1) + ∆Pc(t) (6)

Pm(t) = Pm(t− 1) + ∆Pm(t) (7)

As summary, the general structure of our algorithm is as
follows:
Begin FGA

t = 0 Iteration counter
Initialize populationP (t)
Evaluate populationP (t){i.e., compute fitness values}
while (the end criterion is not met) do

t = t + 1
SelectP (t) from P (t− 1)
CrossoverP (t)
MutateP (t)
EvaluateP (t)
Regulating GA parameters
{

Call fuzzy logic contrller(e1,e2)
Update according to equations (6) and (7)

}
End while

End FGA



Figure 4. The performance curves of SGA

4. Experiment Setup and Results

Based on our algorithms, we have built a re-targetable
prototype of a positioning tool, which means that the tool
can be coupled to different databases. For example, there
are 6 tank commanders, 7 gunners, 8 drivers, and 9 loaders
in the unit. They would be grouped into 6 tank crew. Every
soldier within a kind has the same chance to join any crew.
Considering the problem of finding the whole best assign-
ment, we search for the best solutions using SGA and FGA,
and compare their results. The initial population size is set
to 20. For SGA, the crossover probabilityPc is set to 0.8
and the mutation probabilityPm, 0.01, respectively. We
set the initial parameters in FGA as same as ones in SGA.
The performance curves (best and average fitness values)
of SGA and FGA are illustrated in Figures 4 and 5. SGA
converges quickly but there is a larger probability to get
trapped in local optima, while FGA spends more time to
explore better solutions with a larger probability to arrive
at the global optima. Other statistical results are showed
in Table 3, in which each algorithm was run for 10 times.
Although SGA also searches for satisfactory solutions, em-
pirical results clearly indicates that FGA usually performs
significantly better.

In Figure 4, its maximization of battle effectiveness (best
fitness) obtained is 688.0021, and the grouping result is de-
picted below:

10000005 20000007 30000006 40000008
10000003 20000001 30000001 40000005
10000001 20000004 30000005 40000002
10000004 20000003 30000004 40000003
10000002 20000005 30000007 40000009
10000006 20000002 30000002 40000001

In Figure 5, its maximization of battle effectiveness (best
fitness) obtained is 837.3537, and the grouping result is de-

Figure 5. The performance curves of FGA

Table 3. The best fiteness (10 times) of SGA
and FGA.

Sequence Number SGA FGA
1 750 780
2 693 790
3 740 820
4 720 837
5 735 831
6 760 804
7 732 820
8 770 829
9 688 794
10 710 812

picted below:

10000003 20000007 30000008 40000009
10000006 20000003 30000004 40000004
10000005 20000006 30000002 40000003
10000002 20000002 30000007 40000002
10000001 20000004 30000001 40000007
10000004 20000005 30000005 40000006

5. Conclusions

In this paper, genetic algorithms were introduced for the
crew grouping problem of allocating soldiers intelligently
for different tank combat units. We used fuzzy logic based
controllers to adapt the parameters of genetic algorithms,
thereby improving its performance. The standard genetic
algorithm converges quickly with a larger probability to get



trapped in local optima, while the fuzzy genetic algorithm
spends more time to explore more feasible solutions
with a larger probability to find global optimal solutions.
Empirical results reveal that the proposed FGA method for
the crew grouping problem is efficient when compared to
standard GA approach.

Acknowledgments

The authors wish to thank to Qingsheng Zhang, Xi-
angding Su and Bo Li, for all the discussions, feedback and
technical insights. We are indebted to the anonymous re-
viewers for their helpful comments on the manuscript.

References

[1] M. Srinivas and L.M. Patnaik, ”Adaptive Probabilities of
Crossover and Mutation in Genetic Algorithms”,IEEE Trans-
action on System, Man and Cybernetics,IEEE, 24, 1994, pp.
656-667.

[2] A.A. Jamshidifar and C.Lucas, ”Genetic Algorithm Based
Fuzzy Controller for Nonlinear Systems”,Proceedings of
Second IEEE International Conference on Intelligent Sys-
tems,IEEE, 3, 2004, pp. 43-47.

[3] Goldberg, D.E., The Design of Competent Genetic Algo-
rithms: Steps Toward a Computational Theory of Innovation,
Kluwer Academic Publishers, Dordrecht, 2002.

[4] L. M. Schmitt, ”Theory of Genetic Algorithms II: Models for
Genetic Operators Over the String-tensor Representation of
Populations and Convergence to Global ptima for Arbitrary
Fitness Function Under Scaling”,Theoretical Computer Sci-
ence,Elsevier, 310, 2004, pp. 181-231.

[5] Y. Yun, ”Performance Analysis of Adaptive Genetic Algo-
rithms with Fuzzy Logic and Heuristics”,Fuzzy Optimization
and Decision Making,Kluwer Academic Publishers, 2, 2003,
pp. 161-175.

[6] L. Mark and E. Shay, ”A fuzzy-based lifetime extension of
genetic algorithms”,Fuzzy Sets and Systems,Elsevier, 149,
2005, pp. 131-147.

[7] F. Herrera and M. Lozano. ”Fuzzy adaptive genetic algo-
rithms: design, taxonomy, and future directions”Soft Com-
puting, Springer-Verlag, 7, 2003, pp. 545-562.

[8] O. Cordon, F. Gomide, F. Herrera, F. Hoffmann and L. Mag-
dalena, ”Ten years of genetic fuzzy systems: current frame-
work and new trends”,Fuzzy Sets and Systems,Elsevier, 141,
2004, pp. 5-31.

[9] A. E. Eiben, R. Hinterding, and Z. Michalewicz, ”Parameter
Control in Evolutionary Algorithms”, IEEE Transations on
Evolutionary Computation,IEEE, 3(2), 1999, pp. 124-141.


