
version 2013.1 Informatica 37 (2013) 501–505 501

A Hybrid Meta-Heuristic Algorithm for Job Scheduling on
Computational Grids
Zahra Pooranian
Department of Computer Engineering, Dezful Branch, Islamic Azad University, Dezful, Iran
Email: Zahra.Pooranian@gmail.com

Mohammad Shojafar
Department of Information Engineering, Electronics and Telecommunication (DIET), “Sapienza” University of Rome,
Via Eudossiana 18, 00184, Rome, Italy
E-mail: Shojafar@diet.uniroma1.it

Reza Tavoli
Department of Mathematics, Islamic Azad University, Chalous Branch (IAUC)17 Shahrivar Ave., P.O. Box 46615-
397, Chalous, Iran
Email: r.tavoli@gmail.com

Mukesh Singhal
Computer Science & Engineering, University of California, Merced, CA S&E 296, USA
E-mail: msinghal@ucmerced.edu

Ajith Abraham
Machine Intelligence Research Labs (MIR Labs), Scientific Network for Innovation and Research Excellence, P.O.
Box 2259, Auburn, WA 98071-2259, USA
E-mail: Ajith.Abraham@ieee.org

Keywords: Grid Computing, Genetic Algorithm, Gravitational Emulation Local Search (GELS), Independent Task
Scheduling.

Received: 25 April 2013

The dynamic nature of grid resources and the demands of users produce complexity in the grid
scheduling problem that cannot be addressed by deterministic algorithms with polynomial complexity.
One of the best methods for grid scheduling is the genetic algorithm (GA); the simple and parallel
features of this algorithm make it applicable to several optimization problems. A GA searches the
problem space globally and is unable to search locally. Therefore, scholars have investigated combining
GAs with other heuristic methods to resolve the local search problem. This is the focus of the present
contribution, where we have developed a new hybrid scheduling algorithm that combines a GA and the
gravitational emulation local search (GELS) algorithm denotes GGA. The noteworthy feature of the
proposed optimal scheduler is that it decreases runtime and the number of submitted tasks whose
deadlines are missed. A comparison of the performance of our proposed joint optimal scheduler to
similar methods shows that it produces more optimal computation time.
Povzetek: V tem prispevku smo predlagali nov skupni Umetni algoritem, ki se uporablja v razporejanje
Mreža za neodvisne naloge. Ta pristop je bil preizkušen v več numeričnih in računske primere.

1 Introduction
Grid computing has emerged as a new approach for
solving large-scale problems in scientific, engineering,
and commercial fields [1].

A deciding factor in grid computing design is the
purpose for which it will be used. Design goals can be
divided into three major groups: increasing the efficiency
of an application, improving data access, and increasing
and improving services. Grid systems can be classified
according to these objectives as, respectively, grid

computing systems, data grids, and service grids. Further,
grid-computing systems can be classified into two main
categories: distributed supercomputing and high-
throughput grids [2].

Data grids provide a platform for assembling new
databases from distributed data sources such as digital
libraries or providers’ data warehouses. Although grid
computing also needs to provide data services, the major
difference between a data grid and grid computing is that

502 Informatica 37 (2013) xxx–yyy Z. Pooranian et al.

the former provides a special platform to manage data
storage and access for applications, while in grid
computing, the applications themselves must implement
the storage management schema. An example use for
data grids is data mining that gathers information from
various sources. Two organizations that are working on
developing large-scale data collections are the European
data grid and Globus [2].

Systems in a service grid provide services that cannot
be provided with a single machine [3]. Most research in
grid computing falls under one of these classifications
(data, computing, and service grids).

Among existing uses of grids, grid computing is the
most prevalent. By utilizing the processing power of
CPUs during their idle periods, grid computing can be
several times faster than what a single computer can
achieve today. Therefore, acceptable task scheduling for
resources plays a crucial role in grids, especially
scheduling computing resources for tasks. The main goal
of most schedulers is to find a balance between execution
cost and the runtime for tasks. This means that given a
deadline for completing execution, the running costs are
kept low, or given a fixed cost for execution; the
necessary time to perform the tasks will be minimized.

Generally, there are three methods for scheduling:
1. Manual scheduling. The user divides the tasks

between different resources.
2. Application-mode scheduling. Applications perform

the scheduling, with each application defining the
resources, such as MPI programs, required for its
execution. A list of machines that have MPI programs is
given to the user at runtime.

3. Scheduling that is independent of applications, such
as scheduling by a grid broker. This method is much
more appropriate for grid scheduling. For task processing
and task analysis, applications deliver their requirements
to the broker, based on the quality of service required for
their tasks.

We should note that the resources for grid task
scheduling are distributed in various locations. One or
more resources are selected for running a task, which is
then sent to those resources. The grid scheduler has no
ownership or control over resources. Rather, tasks are
delivered to local resource managers (LRMs) for
execution. After that, the LRMs control the running
status and execution of the tasks they have received.

The first phase of grid task scheduling is resource
discovery, which generates a list of potential resources.
The second phase includes gathering information about
these resources and choosing the best set of resources
matching the application’s requirements. In the third
phase, the task is executed, which involves file staging
and cleanup [4].

Grid systems consist of heterogeneous resources,
managerial systems, policies, and applications with
different requirements. Since these resources are
heterogeneous and distributed and are used in common,
grid efficiency is highly dependent on an effective and
efficient design for its scheduler. Grid scheduling is
considered to be an NP-hard problem. Deterministic
algorithms do not have the necessary efficiency for

solving this problem. Therefore, much research has been
directed toward heuristic methods. Most of these
methods attempt to minimize makespan.

Many heuristic algorithms have recently been
suggested for task scheduling in grid computing,
including hierarchical stochastic Petri net schedulers
(HSPNs) [5-8], genetic algorithms (GAs) [9], the group
leaders’ optimization algorithm (GLOA) [10], simulated
annealing (SA) [11], the queen bee method [12], and the
tabu search (TS) [13] and others [29-37]. Among these,
GAs provide the best heuristic method because they are
inherently parallel and can search several aspects of a
problem space simultaneously. Since the convergence of
a GA is slow for global optimization and has been
proved to be unstable in different implementations, the
efficiency of GAs can be improved by combining them
with other algorithms such as GPSO [14] that it
combines GELS method with PSO.

This research combines a GA and the gravitational
emulation local search (GELS) algorithm. GA’s are weak
for local searches and strong for global searches.
Conversely, GELS is a local search algorithm that
imitates gravitational attraction and is therefore strong
for local searches and weak for global searches.
Combining the benefits of these two algorithms can solve
the grid-scheduling problem. This paper presents a static
scheduling algorithm for scheduling independent tasks in
a grid system. “Static scheduling” means that all
necessary data about tasks, resources, and the number of
resources should be specified before execution. The
advantage of static scheduling is that no overhead is
exerted on the system. In addition to decreasing
makespan, our proposed algorithm considers quality of
service (QOS) to minimize the number of tasks that miss
their deadlines.

The remainder of this paper is organized as follows.
Section 2 briefly describes previous related work and the
intelligent GA and the GELS algorithm, respectively.
Section 3 describes the task-scheduling problem. Section
4 presents our proposed algorithm in detail. Section 5
compares our proposed algorithm with several similar
algorithms, and Section 6 presents our conclusions and
future research directions.

2 Related Work
In the following Section, we provide an overview of
Genetic algorithm and GELS algorithm and explain
various methods, which describe different hybrid, and
joint method that applied for scheduling in grid
computing.

2.1 Genetic algorithms
GAs were first proposed in 1975 by John Holland et al.
[15] at Michigan University. In optimization methods, a
GA or optimization inspired by nature is considered to be
the most natural evaluation method. A GA selects the
most suitable strings from organized stochastic
information that is searched and gathered by humans. In
each generation, a new set of strings is produced based

A Joint Meta-Heuristic Algorithm Applied in Job Scheduling... Informatica 37 (2013) 501–505 503

on artificial strings with the help of the most suitable bits
and elements among the old elements. The new set is
tested stochastically, and its strength or fitness level is
evaluated. The general form of a GA is as follows:

Figure 1. Genetic algorithm

2.2 Gravitational Emulation Local Search
In 1995, Voudouris and his colleagues [16] proposed the
Guided Local Search (GLS) algorithm for searching in a
search space with an NP-hard solution. In 2004, Vebster
[17] presented GLS as a strong algorithm, the GELS
algorithm. GELS mimics gravitational attraction for
searching within a search space. Each response has
different neighbors that can be grouped based on
problem-dependent criteria. The neighbors obtained in
each neighbor group are called a dimension. A primary
velocity is defined for each dimension, and a dimension
with a greater primary velocity is more responsive for the
problem. The GELS algorithm accounts for gravitational
force in the responses in a search space through two
methods. In the first method, a response is selected from
the local neighbor space of the current response and the
gravitational force between these two responses is
calculated. In the second method, the gravitational force
is calculated using all of the neighbor responses in a
neighbor space of the current response rather than being
limited to one response. GELS also implements
movement into the search space with two methods. The
first method allows movement from the current response
toward the response to the current response in local
neighbor spaces. The second method allows movement
toward responses outside of the current response local
neighbor spaces in addition to the neighbor responses of
the current response. Each of these movement methods
can be used in combination with each gravitation force
calculation method, so that there are four models for the
GELS algorithm.

In 2007, Blachandar [18] used the GELS algorithm to
solve the Traveling Salesman Problem and compared it
with other algorithms such as hill climbing and SA. The
results showed that whenever the size of a problem is
small, all algorithms perform roughly the same, but
whenever the size of the problem is large, the GELS
algorithm obtains better results than the other algorithms.

The algorithm begins with a primary response and a
primary velocity vector that consists of a primary
velocity specified by the user or randomly generated.
After the primary velocity vector has been examined, the

responsive dimension with the greatest primary velocity
among the neighbor dimensions is selected for movement
(select and obtain neighbor response).

The algorithm uses a pointer object that can move
within the search space. This object always refers to the
response with the most weight. In the first iteration of the
algorithm using the first method, a dimension is selected
for obtaining a neighbor response from the current
response and a candidate response is selected from the
local neighbor space of the current response in terms of
this dimension. The gravitational force between the
current and candidate responses is calculated and then
added to the primary velocity of the dimension from
which the candidate response was obtained. This is called
the updated primary velocity. In the next iteration, the
primary velocity vector is examined and a new
movement direction is selected for continuing the
response search. Each iteration of the algorithm using the
second method is generally similar to the first method
except that instead of calculating gravitational force and
updating the primary velocity vector for just one
candidate response in the current dimension,
gravitational force is calculated and the primary velocity
updated for each candidate response in the current
dimension. In this algorithm, the gravitational force
between two entities is calculated using Equation (1):

(1) 2R
CA)G(CUf −

=

where CA and CU are the candidate response and
current response, respectively; G is the constant 6.672;
and R is the neighbor radius of two parameters in the
search space. R may be constant or can change
intelligently in each iteration. The algorithm terminates
when one of the following happens: either the primary
velocity for all equal response dimensions (all elements
of the primary velocity vector) are equal to zero or the
maximum number of iterations of the algorithm has been
reached [19].

Another parameter used in this algorithm is the
maximum primary velocity. This parameter is the
maximum value that can be used in the primary velocity
vector. The primary velocity vector is used to select the
movement direction for obtaining a neighbor, and this
parameter prevents the move from increasing the primary
velocity vector elements beyond a certain limit.

In [20], the authors tried to optimize the convergence
speed of a GA with two changing points in the standard
GA. After executing the crossover action, if the fitness
value of the produced population is less than the average
fitness or the best individual of the population, secondary
preferential hybridization or mutation is also used after
the primary mutation action.

Cruz-Chávez [21] proposed a hybrid genetic/annealing
evolutionary algorithm for the independent task
scheduling problem. The main purpose of this algorithm
was to find the solution that minimizes the total runtime.
GAs are weak for local searches, while SA is powerful
for local searches. The authors combined these two

504 Informatica 37 (2013) xxx–yyy Z. Pooranian et al.

methods to use both their abilities to search the problem
space. The GA includes a stochastic population
generator, an elitism selection operator, and mutations
and crossovers with the help of SA. Based on the fitness
function, the selection operator selects the best half of the
chromosomes in the population, the crossover is
performed, and new children are produced for the next
generation. Using a crossover leads to complete searches
of the problem space. The iteration operation used as a
mutation produces an optimized population, and a better
population is found during the SA searching iteration.
This process is repeated for each generation. It should be
noted that thermal simulation techniques are performed
on populations of individuals who have been run off.

In [22], some modifications of GAs are proposed to
improve scheduling efficiency. These changes consist of
the combination of the greedy algorithms, modified
critical path (MCP) [23] and duplication scheduling
heuristic (DSH) [24], with a GA to minimize the start
time for tasks until, in the end, makespan is minimized.
The algorithm also uses idle processor time. The
algorithm has two fitness functions. The first function
searches for chromosomes with the shortest makespan
and the second function are designed to find the most
appropriate chromosomes with respect to load balance.

In [25], a GA is presented in which chaotic variables
are used instead of random variables for chromosome
production. This leads to a distribution of solutions over
the entire search space and avoids local minima, so that
the best solutions and productions are obtained in a
shorter time.

In [26], a GA is combined with the hill-climbing
algorithm to repair chromosomes. This work modifies
invalid individuals in each generation until they become
valid individuals in a new population.

In [27], the GELS algorithm is used for resource
reservation and independent task scheduling, so that in
the objective function, if one resource can’t execute a
task within its specified deadline, the task is allocated to
another resource for execution. Simulation results show
that this algorithm decreases makespan compared to
GAs. In previous methods, a decrease of the entire
execution time was considered, while the number of
tasks missing their deadlines and the load balance
problem were not also considered. Our proposed
algorithm tries to consider these three parameters
simultaneously. Also, because a GA is weak in local
searches, our proposed algorithm combines it with a local
search algorithm to address this weakness. A
combination of a GA and GELS is used because GELS
searches the problem space well and finds better
solutions compared to other local search algorithms such
as hill-climbing and SA.

3 Scheduling Problem Description
The scheduling problem for independent tasks is an NP-
hard problem that consists of N tasks and M machines.
Each task should be considered to be processed by each
of the M machines, so that the makespan is minimized.
However, this only considers one of the QOS parameters,

the time constraint, and ignores the cost. Therefore, we
have introduced a deadline for every task such that each
task should complete its execution before its deadline.
Each task can be executed on only one resource and is
not stopped before its execution is complete.

We use the expected time to compute the ETC
matrix model described in [28]. Since our proposed
scheduling algorithm is static, we assume that the
expected execution time for each task i on each resource
j has already been determined and has been set in the
ETC matrix at ETC[i,j]. Also, the ready time (Ready [j])
for each machine j indicates when j has finished its
previous task. The makespan is equal to the maximum
complete time Completion_Time[i,j] (Equation 2):

(2) makespan=Max(Completion_Time[i,j])
{1≤i≤N,1≤j≤M}

Completion_Time[i,j] is the time at which task i ends

on resource j and is calculated according to Equation (3):

(3) Completion_Time[i,j]=Ready[j]+ETC[i,j]

The purpose of scheduling is to assign tasks to

resources so that the final makespan and the number of
tasks that miss their deadlines are minimized.

4 The Proposed Method (GGA)
The efficiency of genetic algorithms is highly dependent
on how the chromosomes are represented. Here we use a
simple method for representing chromosomes, in order to
simplify the work of the crossover and mutation
operators. Natural numbers are used for encoding the
chromosomes. The numbers inside the genes are random
numbers between 1 and M. The chromosome lengths are
assumed to be task numbers. Figure 2 shows an example
of the chromosome representation. For example, in the
figure, task 4—or T4—executes on Resource 2.

.
T3 T4 T2 T1
4 2 3 1

Figure 2. Chromosome representation

 Initial Population: The initial population is created

randomly. A source is selected randomly until the task
being considered is executed on it. Each of the
chromosomes produced is assumed to be a dimension of
the problem (in fact, the problem’s dimensions are just
the neighbouring solutions that are obtained by changing
the current solution). An initial random velocity is given
to each of the problem’s dimensions, ranging between
one and the maximum velocity.

First Fitness Function: The basic purpose of task
scheduling is to minimize makespan. This is the total
time required until all of the input tasks complete their
execution. It should be noted that this time should always
be less than or equal to the maximum deadline among all
the tasks. In our proposed method for task scheduling, a

A Joint Meta-Heuristic Algorithm Applied in Job Scheduling... Informatica 37 (2013) 501–505 505

solution is more appropriate if in addition to decreasing
makespan, it minimizes the number of tasks that miss
their deadlines. Equation (4) calculates the first fitness
function for each chromosome:

(4)
MD*miss_task

1
)hmakespan(c

1)(chFit1 +=
i

i

where miss_task is the number of tasks that have

missed their deadlines in chromosome chi and MD is the
maximum deadline for all tasks. As the equation shows,
when the makespan and the number of tasks missing
their deadlines are smaller, the fitness function value is
greater, indicating the more promising chromosomes.

Second Fitness function: With respect to the basic

purpose of task scheduling, minimizing makespan,
several chromosomes may be found that have similar
makespans but don’t all balance the load among their
resources. Hence, the second fitness function considers
this factor after obtaining solutions with similar
makespans, to find the most appropriate solution with
respect to load balance.

If the execution time for resource Rj is E_time[Rj], the
average execution time (avg) for all resources is as
shown in Equation (5):

∑ =
⎟
⎠

⎞
⎜
⎝

⎛
=

cesnum_resour

1 cesnum_resour
]E_time[Ravg

j
j (5)

where num_resources is the number of resources. The
load balance for resource i, Cpu_LBi, can then be
calculated with Equation (6):

vgmakespan/aCpu_LB =i (6)

Equation (7) shows the second fitness function that

considers the load balance:

i
i Cpu_LB

1)(chFit2 = (7)

Select an Operation: Before the mutation and

crossover operators apply, the selection phase is first
executed. In our proposed algorithm, we use the GELS
algorithm instead of traditional genetic operators such as
tournament, elitism, etc. These operators provide the
possibility of creating the best solutions in each
generation, but the GELS algorithm is used to select
solutions because one chromosome may not initially
have a good fitness value but turn out to be better after
the mutation and crossover operations. Using the GELS
algorithm, the two chromosomes that have a greater
primary velocity are selected.

Crossover Operator: Our proposed algorithm uses a

two- point crossover operator. Two points are selected
randomly from chromosomes from the previous phase.

Then all of the genes within these two points of the first
and second chromosomes are removed.

Mutation Operator: A point on each chromosome
from the previous phase is randomly selected and then
changed to a random number between 1 and M.

Force Calculation: After applying the crossover and
mutation operations, the gravitational force between the
primary chromosome and the produced chromosome are
calculated as in Equation (8). Then the gravitational force
is added to the velocity of that dimension. This leads to
no copying in the candidate population, if the produced
chromosomes have worse fitness values than the primary
chromosomes.

(8)

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛
−

=

2R

)ih(Current_c1Fit

2R

)i_ch(Candidate1Fit

*6.672Force

Terminating Conditions: The algorithm terminates

when the primary velocity is equal to zero for all
dimensions or the maximum number of algorithm
iterations has been reached.

Algorithm 1 shows the GGA pseudocode.

Algorithm 1 GGA Algorithm (pseudocode)
Input: Tasks Populations;
Output: Scheduled tasks based on Fit1 and Fit2;
1: Generate K chromosomes to initialize the population
2: Velocity_Vector [1..K]=Initial velocity for each

 Dimension ();
3: While (i<=max_iteration and Velocity_Vector[...]≠0)

{
4: /* select current_ch1 and current_ch2 such that the velocity

is larger and generate two offspring, candidate_ch1 and
candidate_ch2, by crossover and mutation*/

5: If (Fit1(candidate_ch1) > Fit1(current_ch1))
current_ch1= candidate_ch1;

6: If (Fit1(candidate_ch2)> Fit1(current_ch2))
 current_ch2= candidate_ch2;

7: Calculate gravitational force between candidate_ch1 and
 candidate_ch2 using Equation (8)

8: Update Velocity_Vector for each dimension by
 gravitational force of chromosome;

9: }// end while
10: If many chromosomes with same Fit1 exist

 Select Best chromosome using Fit2;

4.1 Experimental Results
The GGA algorithm was implemented using Java
software running under the Win XP operating system on
a 2.66GHZ CPU with 4GB RAM. In our proposed
algorithm, we assumed that the crossover rate CR = 0.98
and the mutation rate MR = 0.05.

The contents of the primary velocity vector for the
chromosomes were randomly assigned. The results of
simulations comparing GGA with the GELS, GA, and
GSA algorithms are shown in Figures 4, 5, and 6.

506 Informatica 37 (2013) xxx–yyy Z. Pooranian et al.

4.2 Experimental Results
Here, we have tested our work on various tasks;

Generations and different fitness function orderly.
The diagram in Figure 3 shows a number of scheduled

tasks ranging between 20 and 60 allocated to 20
resources using the comparison algorithms. As the figure
shows, when the number of tasks increases, the
makespan increases as well. The diagram shows that our
proposed algorithm produces a smaller makespan than
the other algorithms.

Figure 3. Comparison of makespans

 Figure 4 compares the algorithms for various
numbers of iterations. It is clear that GGA, which is a
combination of a globally searching GA and the local
GELS algorithm, pays more attention to convergence
velocity and optimization than the other algorithms, since
unlike SA, the GELS algorithm doesn’t have an absolute
probability state.

Figure 4. Comparison of evolutionary process for the different
algorithms

Figure 5 compares the algorithms with respect to the

percentage of tasks that miss their deadlines. In this
diagram, the fitness value is plotted against the rate of
tasks missing deadlines. As the diagram shows,
whenever the fitness value increases, the rate of tasks
missing deadlines decreases. This means that the number
of tasks missing deadlines decreases as a result of the
completion of their makespan. The figure shows that

fewer tasks miss their deadlines in the GGA algorithm
than in the other algorithms.

Figure 5. Comparison of the average missed deadline ratios for
different fitness function values and algorithms.

5 Conclusions
This paper presented an algorithm for solving the grid
task scheduling problem through a combination of a GA,
which is a global search algorithm, and the GELS
algorithm, which searches locally. The algorithm aims at
minimizing makespan as well as the number of tasks that
miss their deadlines. Local search algorithms such as hill
climbing and SA always move to the solutions that have
a better fitness function value, and they search the
problem space randomly. Although the GELS algorithm
shares the special behaviour of greedy algorithms, it
doesn’t always move directly to a solution with a better
fitness function value but rather works by examining
existing solutions. Although the GELS algorithm uses
some random elements, it doesn’t always move among
them in the same way, which is why it doesn’t stop with
locally optimal solutions. By combining the advantages
of the GELS algorithm and GAs, both the convergence
velocity and the GA’s identification of an optimal
response are improved. We compared our proposed
algorithm to other algorithms, and our simulation results
showed that GGA produces smaller makespans than the
other algorithms and also minimizes the number of tasks
that miss their deadlines.

References
[1] J. Kołodzie and F. Xhafa, “Meeting security and user

behavior requirements in Grid scheduling,” Simulation
Modeling Practice and Theory vol. 19, no. 1, pp. 213–
226, 2011.

[2] W.T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb, D.
Gedye and D. Anderson, “A new major SETI project
based on Project SERENDIP data and 100000 personal
computers,” in Proc. of the Fifth International
Conference on Bioastronomy, no. 61, 1997.

[3] I. Foster, C. Kesselman, J. Nick and S. Tuecke, “the
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration,”
Computer, 35 (6), pp. 1-4, 2002.

A Joint Meta-Heuristic Algorithm Applied in Job Scheduling... Informatica 37 (2013) 501–505 507

[4] B. Yan-ping, Zh. Wei and Y. Jin-shou, “An Improved
PSO Algorithm and Its Application to Grid Scheduling
Problem,” in International Symposium on Computer
Science and Computational Technology ISCSCT '08,
2008, pp. 352-355.

[5] M. Shojafar, S. Barzegar and M.R. Meybodi, “A new
Method on Resource Scheduling in grid systems based
on Hierarchical Stochastic Petri net,” in Proc. of third
International Conference on Computer and Electrical
Engineering (ICCEE 2010), 2010, pp. 175-180.

[6] M. Shojafar, Z. Pooranian, J.H. Abawajy and M.R.
Meybodi, “An Efficient Scheduling Method for Grid
Systems Based on a Hierarchical Stochastic Petri Net,”
Journal of Computing Science and Engineering (JCSE),
7(1), pp. 44-52, 2013.

[7] M. Shojafar, S. Barzegar and M.R. Meybodi,
“Msc.Thesis: Time Optimizing in Economical Grid
Using Adaptive Stochastic Petri Net Based on Learning
Automata,” M.s.c. Thesis, Islamic Azad University of
Qazvin, Qazvin, Iran, September 2010.

[8] M. Shojafar, S. Barzegar, and M. R. Maybodi, “Time
optimizing in Economical Grid Using Adaptive
Stochastic Petri Net Based on Learning Automata”, in
Proc. of International Conference on Grid Computing &
Applications (GCA), WORLDCOMP, 2011, pp. 67-73.

[9] G. Falzon and M. Li, “Enhancing genetic algorithms for
dependent job scheduling in grid computing
environments,” The Journal of Supercomputing,
Springer, 62(1), pp. 290–314, 2012.

[10] Z. Pooranian, M. Shojafar, J. H. Abawajy and M.
Singhal, “GLOA: A new Job Scheduling Algorithm for
Grid Computing,” International Journal of Artificial
Intelligence and Interactive Multimedia (IJIMAI), 2(1),
pp. 59-64, 2013.

[11] W. Abdulal and S. Ramachandram, “Reliability-Aware
Scheduling Based on a Novel Simulated Annealing in
Grid,” in Proc. in Fourth International Conference on
Computational Intelligence and Communication
Networks (CICN), pp. 665-670. 2012.

[12] Z. Pooranian, M. Shojafar and B. Javadi, “Independent
Task Scheduling in Grid Computing Based on Queen
Bee Algorithm,” IAES International Journal of Artificial
Intelligence (IJ-AI), 1(4), pp. 171-181, 2012.

[13] F. Xhafaa and A. Abraham, “Computational models and
heuristic methods for Grid scheduling problems,” Future
Generation Computer Systems, 26(4), pp. 608–621, 2010.

[14] Z. Pooranian, A. Harounabadi, M. Shojafar, J.
Mirabedini, “Hybrid PSO for Independent Task
scheduling in Grid Computing to Decrease Makespan,”
in Proc. of International Conference on Future
Information Technology,IPCSIT'11, vol. 13, 2011, pp.
435-439.

[15] J. Holland, “Adaptation in Natural and Artificial
Systems,” University of Michigan Press, Ann Arbor,
ISBN: 0-262-58111-6, 1975.

[16] C. Voudouris and T. Edward, “Guided Local Search.
Technical Report CSM-247,” Department of Computer
Science, University of Essex, UK, August 1995.

[17] L. W. Barry, “Solving Combinatorial Optimization
Problems Using a New Algorithm Based on Gravitational
Attraction,” Ph.D. Thesis, Florida Institute of
Technology Melbourne, FL, USA, May 2004.

[18] S. R. Balachandar and K. Kannan, “Randomized
gravitational emulation search algorithm for symmetric
traveling salesman problem,” Applied Mathematics and
Computation, 192(2), pp. 413–421, 2007.

[19] J. Li, Y. Lou and Y. Shi, “An Optimization Algorithm
Based on Binary Difference and Gravitational Evolution,
“International Journal of Computational Intelligence
Systems, 5(3), pp. 483-493, 2012.

[20] X. Zhang and W. Zeng, “Grid Workflow Scheduling
Based on Improved Genetic Algorithm,” in Proc. of
International Conference on Computer Design and
Applications (ICCDA 2010), 2010, pp. 270-273.

[21] M. Cruz-Chavez, A. Rodriguez-Leon, E. Avila-Melgar,
F. Juarez-Perez, M. Cruz-Rosales and R. Rivera-Lopez,
“Genetic-Annealing Algorithm in Grid Environment for
Scheduling Problems,” Security-Enriched Urban
Computing and Smart Grid Communications in
Computer and Information Science, Springer, vol. 78,
2010, pp. 1-9.

[22] F. A. Omaraa and M.M. Arafa, “Genetic algorithms for
task scheduling problem,” Journal Parallel Distributed
Computing, Elsevier, 70(1), pp. 13-22, 2010.

[23] M. Wu and D.D. Gajski, “Hyper tool: A programming
aid for message-passing systems,” IEEE Transactions on
Parallel and Distributed Systems, 1(3), pp. 330-343,
1990.

[24] A.P. Engelbrech, “Fundamentals of computational swarm
intelligence,” John Wiley & Sons Inc., 2005.

[25] G. Gharooni fard, F. Moein darbari, H. Deldari and A.
Morvaridi, “Scheduling of scientific workflows using a
chaos- genetic algorithm,” in Proc. of International
Conference on Computational Science ICCS2010, 2010,
pp. 1439-1448.

[26] A. Lifeng and T. Maolin, “QoS-Based Web Service
Composition Accommodating Inter-Service
Dependencies Using Minimal-Conflict Hill-Climbing
Repair Genetic Algorithm,” in Proc. of Fourth IEEE
International Conference on Science, 2008, pp. 119-126.

[27] B. Barzegar, A.M. Rahmani and K. Zamanifar,
“Gravitational Emulation Local Search Algorithm for
Advanced Reservation and Scheduling in Grid Systems,”
in Proc. of First Asian Himalayas International
Conference on (2009), 2009, pp. 1-5.

[28] T.D. Braun., H.J. Siegel, N. Beck, L.L. Boloni, M.
Maheswaran, A.L. Reuther, J.P. Robertson, M.D. Theys,
B. Yao, D. Hensgen and R.F. Freund, “A comparison of
eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed
computing systems,” Journal of Parallel and distributed
Computing, 61(6), pp. 680- 1983, 2001.

[29] S.S. Kim, J.H. Byeon, H. Liu, A. Abraham and Sean
McLoone, Optimal job scheduling in grid computing
using efficient binary artificial bee colony optimization,
Soft Computing, Volume 17, Issue 5, pp. 867-882, 2013.

[30] H. Liu, A. Abraham and A. . Hassanien, Scheduling Jobs
on Computational Grids Using Fuzzy Particle Swarm
Algorithm, Future Generation Computing Systems,
Elsevier Science, Netherlands, Volume 26, pp. 1336-
1343, 2010.

[31] H. Izakian , B.T. Ladani, A. Abraham and V. Snasel, A
Discrete Particle Swarm Optimization Approach for Grid
Job Scheduling, International Journal of Innovative
Computing, Information and Control, Volume 6, No. 9,
pp. 1-15, 2010.

[32] H. Izakian, A. Abraham and V. Snasel, Performance
Comparison of Six Efficient Pure Heuristics for
Scheduling Meta-Tasks on Heterogeneous Distributed
Environments, Neural Network World, Volume 19, Issue
6, pp. 695-710, 2009.

[33] H. Liu, A. Abraham and Z. Wang, A Multi-swarm
approach to Multi-objective Flexible Job-shop

508 Informatica 37 (2013) xxx–yyy Z. Pooranian et al.

Scheduling Problems, Fundamenta Informaticae Journal,
IOS Press, Netherlands, Volume 95, Issue 4, pp.465-489,
2009.

[34] H. Izakian, A. Abraham and V. Snasel, Metaheuristic
Based Scheduling Meta-Tasks in Distributed
Heterogeneous Computing Systems, Sensors, Molecular
Diversity Preservation InternationalSwitzerland, Volume
9, Issue 7, pp. 5339-5350, 2009.

[35] F. Xhafa and A. Abraham, Computational models and
heuristic methods for Grid scheduling problems, Future
Generation Computing Systems, Elsevier Science,
Netherlands, volume 26, pp. 608-621, 2010.

[36] A. Abraham, H. Liu and M. Zhao, Particle Swarm
Scheduling for Work-Flow Applications in Distributed
Computing Environments, Metaheuristics for
Scheduling: Industrial and Manufacturing Applications,
Studies in Computational Intelligence, Springer Verlag,
Germany, ISBN 978-3-540-78984-0, pp. 327-342, 2008.

[37] A. Abraham, H. Liu, C. Grosan and F. Xhafa, Nature
Inspired Metaheuristics for Grid Scheduling: Single and
Multiobjective Optimization Approaches, Metaheuristics
for Scheduling: Distributed Computing Environments,
Studies in Computational Intelligence, Springer Verlag,
Germany, ISBN: 978-3-540-69260-7, pp. 247-272, 2008.

