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The dynamic nature of grid resources and the demands of users produce complexity in the grid 
scheduling problem that cannot be addressed by deterministic algorithms with polynomial complexity. 
One of the best methods for grid scheduling is the genetic algorithm (GA); the simple and parallel 
features of this algorithm make it applicable to several optimization problems. A GA searches the 
problem space globally and is unable to search locally. Therefore, scholars have investigated combining 
GAs with other heuristic methods to resolve the local search problem.  This is the focus of the present 
contribution, where we have developed a new hybrid scheduling algorithm that combines a GA and the 
gravitational emulation local search (GELS) algorithm denotes GGA. The noteworthy feature of the 
proposed optimal scheduler is that it decreases runtime and the number of submitted tasks whose 
deadlines are missed. A comparison of the performance of our proposed joint optimal scheduler to 
similar methods shows that it produces more optimal computation time. 
Povzetek: V tem prispevku smo predlagali nov skupni Umetni algoritem, ki se uporablja v razporejanje 
Mreža za neodvisne naloge. Ta pristop je bil preizkušen v več numeričnih in računske primere. 

1 Introduction 
Grid computing has emerged as a new approach for 
solving large-scale problems in scientific, engineering, 
and commercial fields [1].  

A deciding factor in grid computing design is the 
purpose for which it will be used. Design goals can be 
divided into three major groups: increasing the efficiency 
of an application, improving data access, and increasing 
and improving services. Grid systems can be classified 
according to these objectives as, respectively, grid 

computing systems, data grids, and service grids. Further, 
grid-computing systems can be classified into two main 
categories: distributed supercomputing and high-
throughput grids [2]. 

Data grids provide a platform for assembling new 
databases from distributed data sources such as digital 
libraries or providers’ data warehouses. Although grid 
computing also needs to provide data services, the major 
difference between a data grid and grid computing is that 
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the former provides a special platform to manage data 
storage and access for applications, while in grid 
computing, the applications themselves must implement 
the storage management schema. An example use for 
data grids is data mining that gathers information from 
various sources. Two organizations that are working on 
developing large-scale data collections are the European 
data grid and Globus [2].  

Systems in a service grid provide services that cannot 
be provided with a single machine [3]. Most research in 
grid computing falls under one of these classifications 
(data, computing, and service grids). 

Among existing uses of grids, grid computing is the 
most prevalent. By utilizing the processing power of 
CPUs during their idle periods, grid computing can be 
several times faster than what a single computer can 
achieve today. Therefore, acceptable task scheduling for 
resources plays a crucial role in grids, especially 
scheduling computing resources for tasks. The main goal 
of most schedulers is to find a balance between execution 
cost and the runtime for tasks. This means that given a 
deadline for completing execution, the running costs are 
kept low, or given a fixed cost for execution; the 
necessary time to perform the tasks will be minimized.    

Generally, there are three methods for scheduling: 
1. Manual scheduling. The user divides the tasks 

between different resources.  
2. Application-mode scheduling. Applications perform 

the scheduling, with each application defining the 
resources, such as MPI programs, required for its 
execution. A list of machines that have MPI programs is 
given to the user at runtime.  

3. Scheduling that is independent of applications, such 
as scheduling by a grid broker. This method is much 
more appropriate for grid scheduling. For task processing 
and task analysis, applications deliver their requirements 
to the broker, based on the quality of service required for 
their tasks. 

We should note that the resources for grid task 
scheduling are distributed in various locations. One or 
more resources are selected for running a task, which is 
then sent to those resources. The grid scheduler has no 
ownership or control over resources. Rather, tasks are 
delivered to local resource managers (LRMs) for 
execution. After that, the LRMs control the running 
status and execution of the tasks they have received. 

The first phase of grid task scheduling is resource 
discovery, which generates a list of potential resources.  
The second phase includes gathering information about 
these resources and choosing the best set of resources 
matching the application’s requirements. In the third 
phase, the task is executed, which involves file staging 
and cleanup [4]. 

Grid systems consist of heterogeneous resources, 
managerial systems, policies, and applications with 
different requirements. Since these resources are 
heterogeneous and distributed and are used in common, 
grid efficiency is highly dependent on an effective and 
efficient design for its scheduler. Grid scheduling is 
considered to be an NP-hard problem. Deterministic 
algorithms do not have the necessary efficiency for 

solving this problem. Therefore, much research has been 
directed toward heuristic methods. Most of these 
methods attempt to minimize makespan.  

Many heuristic algorithms have recently been 
suggested for task scheduling in grid computing, 
including hierarchical stochastic Petri net schedulers 
(HSPNs) [5-8], genetic algorithms (GAs) [9], the group 
leaders’ optimization algorithm (GLOA) [10], simulated 
annealing (SA) [11], the queen bee method [12], and the 
tabu search (TS) [13] and others [29-37]. Among these, 
GAs provide the best heuristic method because they are 
inherently parallel and can search several aspects of a 
problem space simultaneously. Since the convergence of 
a GA is slow for global optimization and has been 
proved to be unstable in different implementations, the 
efficiency of GAs can be improved by combining them 
with other algorithms such as GPSO [14] that it 
combines GELS method with PSO.  

This research combines a GA and the gravitational 
emulation local search (GELS) algorithm. GA’s are weak 
for local searches and strong for global searches. 
Conversely, GELS is a local search algorithm that 
imitates gravitational attraction and is therefore strong 
for local searches and weak for global searches. 
Combining the benefits of these two algorithms can solve 
the grid-scheduling problem. This paper presents a static 
scheduling algorithm for scheduling independent tasks in 
a grid system. “Static scheduling” means that all 
necessary data about tasks, resources, and the number of 
resources should be specified before execution. The 
advantage of static scheduling is that no overhead is 
exerted on the system. In addition to decreasing 
makespan, our proposed algorithm considers quality of 
service (QOS) to minimize the number of tasks that miss 
their deadlines.  

The remainder of this paper is organized as follows. 
Section 2 briefly describes previous related work and the 
intelligent GA and the GELS algorithm, respectively. 
Section 3 describes the task-scheduling problem. Section 
4 presents our proposed algorithm in detail. Section 5 
compares our proposed algorithm with several similar 
algorithms, and Section 6 presents our conclusions and 
future research directions. 

2 Related Work 
In the following Section, we provide an overview of 
Genetic algorithm and GELS algorithm and explain 
various methods, which describe different hybrid, and 
joint method that applied for scheduling in grid 
computing.  

2.1 Genetic algorithms 
GAs were first proposed in 1975 by John Holland et al. 
[15] at Michigan University. In optimization methods, a 
GA or optimization inspired by nature is considered to be 
the most natural evaluation method. A GA selects the 
most suitable strings from organized stochastic 
information that is searched and gathered by humans. In 
each generation, a new set of strings is produced based 
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on artificial strings with the help of the most suitable bits 
and elements among the old elements. The new set is 
tested stochastically, and its strength or fitness level is 
evaluated. The general form of a GA is as follows: 

 

 
 

Figure 1. Genetic algorithm 

2.2  Gravitational Emulation Local Search  
In 1995, Voudouris and his colleagues [16] proposed the 
Guided Local Search (GLS) algorithm for searching in a 
search space with an NP-hard solution. In 2004, Vebster 
[17] presented GLS as a strong algorithm, the GELS 
algorithm. GELS mimics gravitational attraction for 
searching within a search space. Each response has 
different neighbors that can be grouped based on 
problem-dependent criteria. The neighbors obtained in 
each neighbor group are called a dimension. A primary 
velocity is defined for each dimension, and a dimension 
with a greater primary velocity is more responsive for the 
problem. The GELS algorithm accounts for gravitational 
force in the responses in a search space through two 
methods. In the first method, a response is selected from 
the local neighbor space of the current response and the 
gravitational force between these two responses is 
calculated. In the second method, the gravitational force 
is calculated using all of the neighbor responses in a 
neighbor space of the current response rather than being 
limited to one response. GELS also implements 
movement into the search space with two methods. The 
first method allows movement from the current response 
toward the response to the current response in local 
neighbor spaces. The second method allows movement 
toward responses outside of the current response local 
neighbor spaces in addition to the neighbor responses of 
the current response. Each of these movement methods 
can be used in combination with each gravitation force 
calculation method, so that there are four models for the 
GELS algorithm.  

In 2007, Blachandar [18] used the GELS algorithm to 
solve the Traveling Salesman Problem and compared it 
with other algorithms such as hill climbing and SA. The 
results showed that whenever the size of a problem is 
small, all algorithms perform roughly the same, but 
whenever the size of the problem is large, the GELS 
algorithm obtains better results than the other algorithms. 

The algorithm begins with a primary response and a 
primary velocity vector that consists of a primary 
velocity specified by the user or randomly generated. 
After the primary velocity vector has been examined, the 

responsive dimension with the greatest primary velocity 
among the neighbor dimensions is selected for movement 
(select and obtain neighbor response).  

The algorithm uses a pointer object that can move 
within the search space. This object always refers to the 
response with the most weight. In the first iteration of the 
algorithm using the first method, a dimension is selected 
for obtaining a neighbor response from the current 
response and a candidate response is selected from the 
local neighbor space of the current response in terms of 
this dimension. The gravitational force between the 
current and candidate responses is calculated and then 
added to the primary velocity of the dimension from 
which the candidate response was obtained. This is called 
the updated primary velocity. In the next iteration, the 
primary velocity vector is examined and a new 
movement direction is selected for continuing the 
response search. Each iteration of the algorithm using the 
second method is generally similar to the first method 
except that instead of calculating gravitational force and 
updating the primary velocity vector for just one 
candidate response in the current dimension, 
gravitational force is calculated and the primary velocity 
updated for each candidate response in the current 
dimension. In this algorithm, the gravitational force 
between two entities is calculated using Equation (1): 

(1) 2R
CA)G(CUf −

=  

where CA and CU are the candidate response and 
current response, respectively; G is the constant 6.672; 
and R is the neighbor radius of two parameters in the 
search space.  R may be constant or can change 
intelligently in each iteration. The algorithm terminates 
when one of the following happens: either the primary 
velocity for all equal response dimensions (all elements 
of the primary velocity vector) are equal to zero or the 
maximum number of iterations of the algorithm has been 
reached [19]. 

Another parameter used in this algorithm is the 
maximum primary velocity. This parameter is the 
maximum value that can be used in the primary velocity 
vector. The primary velocity vector is used to select the 
movement direction for obtaining a neighbor, and this 
parameter prevents the move from increasing the primary 
velocity vector elements beyond a certain limit. 

In [20], the authors tried to optimize the convergence 
speed of a GA with two changing points in the standard 
GA. After executing the crossover action, if the fitness 
value of the produced population is less than the average 
fitness or the best individual of the population, secondary 
preferential hybridization or mutation is also used after 
the primary mutation action.  

Cruz-Chávez [21] proposed a hybrid genetic/annealing 
evolutionary algorithm for the independent task 
scheduling problem. The main purpose of this algorithm 
was to find the solution that minimizes the total runtime. 
GAs are weak for local searches, while SA is powerful 
for local searches. The authors combined these two 
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methods to use both their abilities to search the problem 
space. The GA includes a stochastic population 
generator, an elitism selection operator, and mutations 
and crossovers with the help of SA. Based on the fitness 
function, the selection operator selects the best half of the 
chromosomes in the population, the crossover is 
performed, and new children are produced for the next 
generation.  Using a crossover leads to complete searches 
of the problem space. The iteration operation used as a 
mutation produces an optimized population, and a better 
population is found during the SA searching iteration. 
This process is repeated for each generation. It should be 
noted that thermal simulation techniques are performed 
on populations of individuals who have been run off.  

In [22], some modifications of GAs are proposed to 
improve scheduling efficiency. These changes consist of 
the combination of the greedy algorithms, modified 
critical path (MCP) [23] and duplication scheduling 
heuristic (DSH) [24], with a GA to minimize the start 
time for tasks until, in the end, makespan is minimized. 
The algorithm also uses idle processor time. The 
algorithm has two fitness functions. The first function 
searches for chromosomes with the shortest makespan 
and the second function are designed to find the most 
appropriate chromosomes with respect to load balance.  

In [25], a GA is presented in which chaotic variables 
are used instead of random variables for chromosome 
production. This leads to a distribution of solutions over 
the entire search space and avoids local minima, so that 
the best solutions and productions are obtained in a 
shorter time.  

In [26], a GA is combined with the hill-climbing 
algorithm to repair chromosomes. This work modifies 
invalid individuals in each generation until they become 
valid individuals in a new population.  

In [27], the GELS algorithm is used for resource 
reservation and independent task scheduling, so that in 
the objective function, if one resource can’t execute a 
task within its specified deadline, the task is allocated to 
another resource for execution. Simulation results show 
that this algorithm decreases makespan compared to 
GAs. In previous methods, a decrease of the entire 
execution time was considered, while the number of 
tasks missing their deadlines and the load balance 
problem were not also considered. Our proposed 
algorithm tries to consider these three parameters 
simultaneously. Also, because a GA is weak in local 
searches, our proposed algorithm combines it with a local 
search algorithm to address this weakness. A 
combination of a GA and GELS is used because GELS 
searches the problem space well and finds better 
solutions compared to other local search algorithms such 
as hill-climbing and SA. 

3 Scheduling Problem Description 
The scheduling problem for independent tasks is an NP-
hard problem that consists of N tasks and M machines. 
Each task should be considered to be processed by each 
of the M machines, so that the makespan is minimized. 
However, this only considers one of the QOS parameters, 

the time constraint, and ignores the cost. Therefore, we 
have introduced a deadline for every task such that each 
task should complete its execution before its deadline. 
Each task can be executed on only one resource and is 
not stopped before its execution is complete.  

We use the expected time to compute the ETC 
matrix model described in [28]. Since our proposed 
scheduling algorithm is static, we assume that the 
expected execution time for each task i on each resource 
j has already been determined and has been set in the 
ETC matrix at ETC[i,j]. Also, the ready time (Ready [j]) 
for each machine j indicates when j has finished its 
previous task. The makespan is equal to the maximum 
complete time Completion_Time[i,j] (Equation 2): 

 

(2) makespan=Max(Completion_Time[i,j]) 
{1≤i≤N,1≤j≤M} 

 
Completion_Time[i,j] is the time at which task i ends 

on resource j and is calculated according to Equation (3):  
 

(3) Completion_Time[i,j]=Ready[j]+ETC[i,j] 
 
The purpose of scheduling is to assign tasks to 

resources so that the final makespan and the number of 
tasks that miss their deadlines are minimized. 

4 The Proposed Method (GGA) 
The efficiency of genetic algorithms is highly dependent 
on how the chromosomes are represented. Here we use a 
simple method for representing chromosomes, in order to 
simplify the work of the crossover and mutation 
operators. Natural numbers are used for encoding the 
chromosomes. The numbers inside the genes are random 
numbers between 1 and M. The chromosome lengths are 
assumed to be task numbers. Figure 2 shows an example 
of the chromosome representation. For example, in the 
figure, task 4—or T4—executes on Resource 2.  

. 
T3 T4 T2 T1 
4 2 3 1 

 
Figure 2. Chromosome representation 

 
 Initial Population: The initial population is created 

randomly. A source is selected randomly until the task 
being considered is executed on it. Each of the 
chromosomes produced is assumed to be a dimension of 
the problem (in fact, the problem’s dimensions are just 
the neighbouring solutions that are obtained by changing 
the current solution). An initial random velocity is given 
to each of the problem’s dimensions, ranging between 
one and the maximum velocity. 

First Fitness Function: The basic purpose of task 
scheduling is to minimize makespan. This is the total 
time required until all of the input tasks complete their 
execution. It should be noted that this time should always 
be less than or equal to the maximum deadline among all 
the tasks. In our proposed method for task scheduling, a 
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solution is more appropriate if in addition to decreasing 
makespan, it minimizes the number of tasks that miss 
their deadlines. Equation (4) calculates the first fitness 
function for each chromosome: 

 

(4)  
MD*miss_task

1
)hmakespan(c

1)(chFit1 +=
i

i
 

 
where miss_task is the number of tasks that have 

missed their deadlines in chromosome chi and MD is the 
maximum deadline for all tasks. As the equation shows, 
when the makespan and the number of tasks missing 
their deadlines are smaller, the fitness function value is 
greater, indicating the more promising chromosomes. 

 
Second Fitness function: With respect to the basic 

purpose of task scheduling, minimizing makespan, 
several chromosomes may be found that have similar 
makespans but don’t all balance the load among their 
resources. Hence, the second fitness function considers 
this factor after obtaining solutions with similar 
makespans, to find the most appropriate solution with 
respect to load balance.  

If the execution time for resource Rj is E_time[Rj], the 
average execution time (avg) for all resources is as 
shown in Equation (5): 

 

∑ =
⎟
⎠

⎞
⎜
⎝

⎛
=

cesnum_resour

1 cesnum_resour
]E_time[Ravg

j
j  (5) 

where num_resources is the number of resources. The 
load balance for resource i, Cpu_LBi, can then be 
calculated with Equation (6): 

 
vgmakespan/aCpu_LB =i  (6) 

 
Equation (7) shows the second fitness function that 

considers the load balance: 
 

i
i Cpu_LB

1)(chFit2 =  (7) 

 
Select an Operation: Before the mutation and 

crossover operators apply, the selection phase is first 
executed. In our proposed algorithm, we use the GELS 
algorithm instead of traditional genetic operators such as 
tournament, elitism, etc. These operators provide the 
possibility of creating the best solutions in each 
generation, but the GELS algorithm is used to select 
solutions because one chromosome may not initially 
have a good fitness value but turn out to be better after 
the mutation and crossover operations. Using the GELS 
algorithm, the two chromosomes that have a greater 
primary velocity are selected. 

 
Crossover Operator: Our proposed algorithm uses a 

two- point crossover operator. Two points are selected 
randomly from chromosomes from the previous phase. 

Then all of the genes within these two points of the first 
and second chromosomes are removed. 

Mutation Operator: A point on each chromosome 
from the previous phase is randomly selected and then 
changed to a random number between 1 and M. 

Force Calculation: After applying the crossover and 
mutation operations, the gravitational force between the 
primary chromosome and the produced chromosome are 
calculated as in Equation (8). Then the gravitational force 
is added to the velocity of that dimension. This leads to 
no copying in the candidate population, if the produced 
chromosomes have worse fitness values than the primary 
chromosomes.  

(8) 
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Terminating Conditions: The algorithm terminates 

when the primary velocity is equal to zero for all 
dimensions or the maximum number of algorithm 
iterations has been reached.  

Algorithm 1 shows the GGA pseudocode. 
 

Algorithm 1 GGA Algorithm (pseudocode) 
Input: Tasks Populations;  
Output: Scheduled tasks based on Fit1 and Fit2; 
1: Generate K chromosomes to initialize the population 
2: Velocity_Vector [1..K]=Initial velocity for each 

             Dimension (); 
3: While (i<=max_iteration and Velocity_Vector[...]≠0) 

{ 
4: /* select current_ch1 and current_ch2 such that the velocity 

is larger and generate two offspring, candidate_ch1 and 
candidate_ch2, by crossover and mutation*/ 

5: If  (Fit1(candidate_ch1) > Fit1(current_ch1) ) 
current_ch1= candidate_ch1; 

6: If  (Fit1(candidate_ch2)> Fit1(current_ch2)) 
 current_ch2= candidate_ch2; 

7: Calculate gravitational force between candidate_ch1 and 
           candidate_ch2 using Equation (8) 

8: Update Velocity_Vector for each dimension by  
           gravitational force of chromosome; 

9: }// end while 
10: If  many chromosomes with same Fit1 exist 

            Select Best chromosome using Fit2; 

4.1 Experimental Results    
The GGA algorithm was implemented using Java 
software running under the Win XP operating system on 
a 2.66GHZ CPU with 4GB RAM. In our proposed 
algorithm, we assumed that the crossover rate CR = 0.98 
and the mutation rate MR = 0.05.  

The contents of the primary velocity vector for the 
chromosomes were randomly assigned. The results of 
simulations comparing GGA with the GELS, GA, and 
GSA algorithms are shown in Figures 4, 5, and 6.  
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4.2 Experimental Results 
Here, we have tested our work on various tasks; 

Generations and different fitness function orderly.  
The diagram in Figure 3 shows a number of scheduled 

tasks ranging between 20 and 60 allocated to 20 
resources using the comparison algorithms. As the figure 
shows, when the number of tasks increases, the 
makespan increases as well. The diagram shows that our 
proposed algorithm produces a smaller makespan than 
the other algorithms. 

 

 
 

Figure 3. Comparison of makespans 
 

  Figure 4 compares the algorithms for various 
numbers of iterations. It is clear that GGA, which is a 
combination of a globally searching GA and the local 
GELS algorithm, pays more attention to convergence 
velocity and optimization than the other algorithms, since 
unlike SA, the GELS algorithm doesn’t have an absolute 
probability state. 

 

 
 

Figure 4. Comparison of evolutionary process for the different 
algorithms 

 
Figure 5 compares the algorithms with respect to the 

percentage of tasks that miss their deadlines. In this 
diagram, the fitness value is plotted against the rate of 
tasks missing deadlines. As the diagram shows, 
whenever the fitness value increases, the rate of tasks 
missing deadlines decreases. This means that the number 
of tasks missing deadlines decreases as a result of the 
completion of their makespan. The figure shows that 

fewer tasks miss their deadlines in the GGA algorithm 
than in the other algorithms. 

 

 
 

Figure 5. Comparison of the average missed deadline ratios for 
different fitness function values and algorithms. 
 

5 Conclusions 
This paper presented an algorithm for solving the grid 
task scheduling problem through a combination of a GA, 
which is a global search algorithm, and the GELS 
algorithm, which searches locally. The algorithm aims at 
minimizing makespan as well as the number of tasks that 
miss their deadlines. Local search algorithms such as hill 
climbing and SA always move to the solutions that have 
a better fitness function value, and they search the 
problem space randomly. Although the GELS algorithm 
shares the special behaviour of greedy algorithms, it 
doesn’t always move directly to a solution with a better 
fitness function value but rather works by examining 
existing solutions. Although the GELS algorithm uses 
some random elements, it doesn’t always move among 
them in the same way, which is why it doesn’t stop with 
locally optimal solutions. By combining the advantages 
of the GELS algorithm and GAs, both the convergence 
velocity and the GA’s identification of an optimal 
response are improved. We compared our proposed 
algorithm to other algorithms, and our simulation results 
showed that GGA produces smaller makespans than the 
other algorithms and also minimizes the number of tasks 
that miss their deadlines. 
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