
ENSEMBLE OF FLEXIBLE NEURAL
TREES FOR BREAST CANCER

DETECTION

Yuehui CHEN1, Ajith ABRAHAM2 and Yong ZHANG3

1School of Information Science and Engineering,
Jinan University, Jinan 250022, P.R. China

E-mail: yhchen@ujn.edu.cn

2IITA Professorship Program,
School of Computer Science and Engineering,

Chung-Ang University, Seoul, Republic of Korea
E-mail: ajith.abraham@ieee.org

3School of Control Science and Engineering,
Jinan University, Jinan 250022, P.R. China

E-mail: cse_zhangy@ujn.edu.cn

Abstract

Breast cancer is one of the major tumor related cause of death in women.
Various artificial intelligence techniques have been used to improve the
diagnoses procedures and to aid the physician’s efforts. In this pa-
per, we summarize our study to detect breast cancer using a Flexible
Neural Tree (FNT) and an ensemble of FNTs. For the FNT model, a
tree-structure based evolutionary algorithm and the Particle Swarm Op-
timization (PSO) are used to find an optimal FNT. The performance of
each approach is evaluated using the breast cancer data set. Simula-
tion results show that the obtained FNT model has a fewer number of
variables with reduced number of input features and without significant
reduction in the detection accuracy. The overall accuracy could be im-
proved by using an generalized ensemble method.

Keywords: Flexible neural tree, probabilistic incremental program evo-
lution, particle swarm optimization, ensemble learning, breast cancer
detection

1 Introduction

Breast cancer is the most common cancer in women in many countries.
Most breast cancers are detected as a lump/mass on the breast, or through self-
examination or mammography [1]. Screening mammography is the best tool
available for detecting cancerous lesions before clinical symptoms appear [7].
Surgery through a biopsy or lumpectomy have been also been the most com-
mon methods of removal. Fine needle aspiration (FNA) of breast masses is a
cost-effective, non-traumatic, and mostly invasive diagnostic test that obtains
information needed to evaluate malignancy. Recently, a new less invasive tech-
nique, which uses super-cooled nitrogen to freeze and shrink a non-cancerous
tumor and destroy the blood vessels feeding the growth of the tumor, has been
developed [2] in the USA.

Various artificial intelligence techniques have been used to improve the di-
agnoses procedures and to aid the physician’s efforts [3], [4], [5], [6]. Fogel
et al. [3] used evolutionary programming to train artificial neural networks to
detect breast cancer using radiographic features and patient age. Results from
112 suspicious breast masses (63 malignant, 49 benign, biopsy proven) indi-
cated that a significant probability of detecting malignancies can be achieved
using simple neural architectures at the risk of a small percentage of false pos-
itives.

One of the most difficult problems for neural network modeling is selec-
tion of proper neural network structure. Usually single network fails to cap-
ture all the intricacy present in the data. Ensemble uses many neural network
outputs to jointly solve a problem and at the same time improves the gener-
alization ability of the network significantly. Therefore, in most of the cases,
combination of neural networks improves accuracy of estimation since differ-
ent networks capture different pattern of the data. Hence, classification error
of a combined network (ensemble) is less as compared to individual networks.
It was found that the use of the ensembles resulted in an improvement of the
classifications and predictions over the individual neural network (NN) models
[14], [15], [16], [17].

In this paper, we evaluate the performance of Flexible Neural Trees and
an ensemble of FNTs to detect breast-cancer. For FNT model, a tree-structure
based evolutionary algorithm and the Particle Swarm Optimization (PSO) are
used to find an optimal FNT. Simulation studies shown the effectiveness of
the proposed method. The paper is organized as follows. The PSO algorithm
is given in Section 2. The FNTs and their ensemble classifiers are described
in Section 3. Section 4 gives the simulation results. Finally in Section 5 we
present some concluding remarks.

2 The PSO Algorithm

The PSO [8] conducts searches using a population of particles which cor-
respond to individuals in an evolutionary algorithm (EA). A population of par-
ticles is randomly generated initially. Each particle represents a potential so-
lution and has a position represented by a position vector xi. A swarm of
particles moves through the problem space, with the moving velocity of each
particle represented by a velocity vector vi. At each time step, a function fi
representing a quality measure is calculated by using xi as input. Each particle
keeps track of its own best position, which is associated with the best fitness
it has achieved so far in a vector pi. Furthermore, the best position among all
the particles obtained so far in the population is kept track of as pg. In addition
to this global version, another version of PSO keeps track of the best position
among all the topological neighbors of a particle.

At each time step t, by using the individual best position, pi(t), and the
global best position, pg(t), a new velocity for particle i is updated by

vi(t + 1) = vi(t) + c1φ1(pi(t) − xi(t)) + c2φ2(pg(t) − xi(t)) (1)

where c1 and c2 are positive constant and φ1 and φ2 are uniformly distributed
random number in [0,1]. The term vi is limited to the range of ±vmax. If the
velocity violates this limit, it is set to its proper limit. Changing velocity this
way enables the particle i to search around its individual best position, pi, and
global best position, pg. Based on the updated velocities, each particle changes
its position according to the following equation:

xi(t + 1) = xi(t) + vi(t + 1). (2)

We deployed a PSO algorithm to optimize the parameter vectors of the
FNT.

3 Flexible Neural Tree Classifier

In this research, a tree-structural based encoding method with specific in-
struction set is selected for representing a FNT model [9], [10].

3.1 Flexible Neuron Instructor and FNT Model

The function set F and terminal instruction set T used for generating a
FNT model are described as follows:

S = F
⋃

T = {+2,+3, . . . ,+N}
⋃
{x1, . . . , xn}, (3)

x1

xn

x2 +
n

ω
 1

ω n

f(a,b) yω
 2

Figure 1. A flexible neuron operator

where +i(i = 2, 3, . . . ,N) denote non-leaf nodes’ instructions and taking i argu-
ments. x1,x2,. . .,xn are leaf nodes’ instructions and taking no other arguments.
The output of a non-leaf node is calculated as a flexible neuron model (see
Fig.1). From this point of view, the instruction +i is also called a flexible neu-
ron operator with i inputs.

In the creation process of neural tree, if a nonterminal instruction, i.e.,
+i(i = 2, 3, 4, . . . ,N) is selected, i real values are randomly generated and
used for representing the connection strength between the node +i and its chil-
dren. In addition, two adjustable parameters ai and bi are randomly created as
flexible activation function parameters. Some examples of flexible activation
functions are shown in Table 1.

For developing the FNT classifier, the following flexible activation func-
tion is used.

f (ai, bi, x) = e−
1
2 (x−ai

bi
)2

(4)

The output of a flexible neuron +n can be calculated as follows. The total
excitation of +n is

netn =

n∑

j=1

w j ∗ x j (5)

where x j(j = 1, 2, . . . , n) are the inputs to node +n. The output of the node +n

is then calculated by

outn = f (an, bn, netn) = e−
1
2 (netn−an

bn
)2
. (6)

Table 1. The activation functions

Gaussian function f (x, a, b) = e−
1
2 (x−a

b)2

Flexible unipolar sigmoid function f (x, a) =
2|a|

1+e−2|a|x

Flexible bipolar sigmoid function f (x, a) = 1−e−2xa

a(1+e−2xa)

+

x1

x3x2

x1 x2 x3 x3 x2 x1 x3x2

x3x2

Output layer

Second hidden

layer

First hidden layer

Input layer

6

+
3

+
3 +

2 +
3

x1 +
2

Figure 2. A typical representation of neural tree with function instruction set F =

{+2,+3,+4,+5,+6}, and terminal instruction set T = {x1, x2, x3}

A typical flexible neural tree model is shown as Fig.2. The overall output
of flexible neural tree can be computed from left to right by depth-first method,
recursively.

3.2 Fitness function

A fitness function maps FNT to scalar, real-valued fitness values that reflect
the FNT’ performances on a given task. Firstly the fitness functions should be
seen as error measures, i.e., MS E or RMS E. A secondary non-user-defined
objective for which algorithm always optimizes FNTs is the size of FNT usu-
ally measured by number of nodes. Among FNTs having equal fitness values
smaller FNTs are always preferred. The fitness function used for the FNT
algorithm is given by the mean square error (MS E):

Fit(i) =
1
P

P∑

j=1

(y j
1 − y j

2)2 (7)

where P is the total number of samples, y j
1 and y j

2 are the actual required
output and the FNT model output of j-th sample. Fit(i) denotes the fitness
value of i-th individual.

3.3 The Optimization of FNT Model

The optimization of FNT includes the tree-structure and parameter opti-
mization. Finding an optimal or near-optimal neural tree is formulated is ac-

complished by using probabilistic incremental program evolution algorithm
(PIPE) algorithm [18] and the parameters embedded in a FNT are optimized
using a PSO algorithm.

Evolving an optimal or near-optimal neural tree structure. PIPE com-
bines probability vector coding of program instructions, population-based in-
cremental learning, and tree-coded programs. PIPE iteratively generates suc-
cessive populations of functional programs according to an adaptive probabil-
ity distribution, represented as a probabilistic prototype tree (PPT), over all
possible programs. Each iteration uses the best program to refine the distribu-
tion. Thus, the structures of promising individuals are learned and encoded in
the PPT.

The PPT stores the knowledge gained from experiences with programs
(trees) and guides the evolutionary search. It holds the probability distribution
over all possible programs that can be constructed from a predefined instruc-
tion set. The PPT is generally a complete n-ary tree with infinitely many nodes,
where n is the maximum number of function arguments.

Each node N j in PPT, with j ≥ 0 contains a variable probability vector −→P j.
Each −→P j has n components, where n is the number of instructions in instruc-
tion set S . Each component P j(I) of −→P j denotes the probability of choosing
instruction I ∈ S at node N j. Each vector −→P j is initialized as follows:

P j(I) =
PT

l
,∀I : I ∈ T (8)

P j(I) =
1 − PT

k
,∀I : I ∈ F, (9)

PIPE combines two forms of learning: generation-based learning (GBL)
and elitist learning (EL). GBL is PIPE’s main learning algorithm. The purpose
of EL is to use the best program found so far as an attractor. PIPE executes as
follows:

GBL

REPEAT

with probability Pel DO EL

otherwise DO GBL

UNTIL termination criterion is reached

Here Pel is a user-defined constant in [0,1].
Generation-Based Learning

Step 1. Creation of Program Population. A population of programs
PROG j (0 < j ≤ PS ; PS is population size) is generated using the prototype
tree PPT.

Step 2. Population Evaluation. Each program PROG j of the current pop-
ulation is evaluated on the given task and assigned a fitness value FIT (PROG j)
according to the predefined fitness function (Equations(5)and (6)). The best
program of the current population (the one with the smallest fitness value) is
denoted PROGb . The best program found so far (elitist) is preserved in PROG

el.
Step 3. Learning from Population. Prototype tree probabilities are mod-

ified such that the probability P(PROGb) of creating PROGb increases. This
procedure is called adaptting PPT towards (Progb). This is implemented as
follows. First P(PROGb) is computed by looking at all PPT nodes N j used to
generate PROGb :

P
(
PROGb

)
=

∏

j:N j used to generate PROGb

P j
(
I j(PROGb)

)
(10)

where I j(PROGb) denotes the instruction of program PROGb at node position j.
Then a target probability PT ARGET for PROGb is calculated:

PT ARGET = P(PROGb) + (1 − P(PROGb)) · lr · ε + FIT (PROG
el)

ε + FIT (PROGb)
(11)

Here lr is a constant learning rate and ε a positive user-defined constant. Given
PT ARGET , all single node probabilities P j(I j(PROGb)) are increased iteratively:

REPEAT:

P j
(
I j(PROGb)

)
= P j

(
I j(PROGb)

)
+ clr · lr ·

(
1 − P j

(
I j(PROGb)

))
(12)

UNTIL P
(
PROGb

) ≥ PT ARGET

where clr is a constant influencing the number of iterations. The smaller clr

the higher the approximation precision of PT ARGET and the number of required
iterations. Setting clr = 0.1 turned out to be a good compromise between
precision and speed. And then all adapted vectors −→P j are re-normalized.

Step 4. Mutation and Crossover of Prototype Tree. All probabilities
P j(I) stored in nodes N j that were accessed to generate program PROGb are
mutated with probability PMp :

PMp =
PM

n · √|PROGb |
(13)

where the user-defined parameter PM defines the overall mutation probability,
n is the number of instructions in instruction set S and |PROGb | denotes the

number of nodes in program PROGb . Selected probability vector components
are then mutated as follows:

P j (I) = P j (I) + mr ·
(
1 − P j (I)

)
(14)

where mr is the mutation rate, another user-defined parameter. Also all mu-
tated vectors −→P j are re-normalized.

Step 5. Prototype Tree Pruning. At the end of each generation the pro-
totype tree is pruned. PPT subtrees attached to nodes that contain at least one
probability vector component above a threshold TP can be pruned.

Step 6. Termination Criteria. Repeat above procedure until a fixed num-
ber of program evaluations is reached or a satisfactory solution is found.

Elitist Learning
Elitist learning focuses search on previously discovered promising parts

of the search space. The PPT is adapted towards the elitist program PROG
el.

This is realized by replacing the PROGb with PROG
el in learning from popula-

tion in Step 3. It is particularly useful with small population sizes and works
efficiently in the case of noise-free problems.

In order to learn the structure and parameters of a FNT simultaneously
there is a tradeoff between the structure optimization and parameter learning.
In fact, if the structure of the evolved model is not appropriate, it is not useful to
pay much attention to the parameter optimization. On the contrary, if the best
structure has been found, further structure optimization may destroy the best
structure. In this paper, a technique for balancing the structure optimization
and parameter learning is proposed. If the better structure is found then do
local search (PSO) for a number of steps (maximum allowed steps) or stop in
case no better parameter vector is found for a significantly long time (say 100
to 2000 in our experiments). The criterion of better structure is distinguished
as follows: if the fitness value of the best program is smaller than the fitness
value of the elitist program, or the fitness values of two programs are equal
but the nodes of the former is lower than the later, then we say that the better
structure is found.

Parameter Optimization by PSO. Parameter optimization is achieved by
the PSO algorithm as described in Section 2. In this stage, the architecture of
FNT model is fixed, and it is the best tree developed during the end of run of
the structure search. The parameters (weights and flexible activation function
parameters) encoded in the best tree formulate a particle. The PSO algorithm
works as follows:

(a) Initial population is generated randomly. The learning parameters c1 and
c2 in PSO should be assigned in advance.

(b) The objective function value is calculated for each particle.

(c) Modification of search point. The current search point of each particle
is changed using Eqn.(2) and Eqn.(1).

(d) If maximum number of generations is reached or no better parameter
vector is found for a significantly long time (100 steps), then stop, oth-
erwise goto step (b).

The General Learning Algorithm. The general learning procedure for
designing a FNT model may be described as follows.

1) Set the initial values of parameters used in the PIPE and PSO algorithms.
Set the elitist program as NULL and its fitness value as a biggest posi-
tive real number of the computer at hand. Create the initial population
(flexible neural trees and their corresponding parameters);

2) Structure optimization by PIPE algorithm as described in subsection 3.1,
in which the fitness function is calculated by mean square error (MSE)
or root mean square error(RMSE).

3) If the better structure is found, then go to step 4), otherwise go to step
2);

4) Parameter optimization is achieved by the degraded ceiling algorithm as
described in subsection 3.3. In this stage, the tree structure or architec-
ture of flexible neural tree model is fixed, and the best tree is taken from
the end of run of the PIPE search. All the parameters used in the best
tree formulated a parameter vector to be optimized by local search;

5) If the maximum number of iterations of PSO algorithm is reached, or no
better parameter vector is found for a significantly long time (100 steps)
then go to step 6); otherwise go to step 4);

6) If satisfactory solution is found, then stop; otherwise go to step 2.

3.4 The Ensemble Classifier

For most regression and classification problems, combining the outputs of
several predictors improves the performance of a single generic one [19]. For-
mal support to this property is provided by the so-called bias/variance dilemma
[20], based on a suitable decomposition of the prediction error. According to
these ideas, good ensemble members must be both accurate and diverse, which
poses the problem of generating a set of predictors with reasonably good in-
dividual performances and independently distributed predictions for the test

points. Diverse individual predictors can be obtained in several ways. These
include: (i) using different algorithms to learn from the data (classification
and regression trees, artificial neural networks, support vector machines, etc.),
(ii) changing the internal structure of a given algorithm (for instance, number
of nodes/depth in trees or architecture in neural networks), and (iii) learning
from different adequately-chosen subsets of the data set. The probability of
success in strategy (iii), the most frequently used, is directly tied to the insta-
bility of the learning algorithm. That is, the method must be very sensitive
to small changes in the structure of the data and/or in the parameters defining
the learning process. Again, classical examples in this sense are classification
and regression trees and artificial neural networks (ANNs). In particular, in the
case of ANNs the instability comes naturally from the inherent data and train-
ing process randomness, and also from the intrinsic non-identifiability of the
model. In what follows, three ensemble methods are employed for the stock
index forecasting problems.

3.4.1 The Basic Ensemble Method

A simple approach for combining several classifier outputs is to simply
average them together. The basic ensemble method (BEM) output is defined
as:

fBEM =
1
n

n∑

i=1

fi(x) (15)

This approach by itself can lead to improved performance [12], but doesn’t
take into account the fact that some FNTs may be more accurate than others.
It has the advantage that it is easy to understand and implement [13] and can
be shown not to increase the expected error [13].

3.4.2 The Generalized Ensemble Method

A generalization to the BEM method is to find weights for each output that
minimize the positive and negative classification rates of the ensemble. The
general ensemble method (GEM) is defined:

fBEM =
1
n

n∑

i=1

αi fi(x) (16)

where the α′i s are chosen to minimize the positive and negative classification
rates with respect to the target class index and sum to 1. In this work, the opti-
mal weights of the ensemble classifier are optimized by using PSO algorithm.

Table 2. Comparative results of the FNTs and ensemble of FNTs classification meth-
ods for the detection of breast cancer

Cancer type FNT1 FNT2 FNT3 FNT4 FNT5 FNT6
Benign 93.31% 91.55% 91.20% 94.71% 92.61% 93.66%
Malignant 93.31% 91.90% 91.20% 91.55% 90.85% 91.91%
Cancer type BEM GEM
Benign 95.43% 97.18%
Malignant 94.72% 97.19%

Table 3. Important variables selected by FNT algorithm automatically for Benign
detection

FNTs Important variables
FNT1 x12,x14,x15,x16,x17,x18,x23,x24,x26,x27,x29

FNT2 x0,x1,x3,x5,x6,x7,x9,x13,x14,x18,x19, x20,x23,x24,x27,x29

FNT3 x5,x6,x7,x10,x12,x13,x18,x19,x22,x25,x29

FNT4 x0,x4,x5,x6,x8,x11,x13,x22,x23,x24,x27,x28,x29

FNT5 x0,x2,x3,x4,x6,x7,x9,x10,x14,x15,x19,x23,x24,x29

FNT6 x1,x2,x5,x7,x9,x10,x11,x13,x16,x18,x20,x22,x26,x27

4 Results

As a preliminary study, we made use of the Wisconsin breast cancer data
set from the UCI machine-learning database repository [11]. This data set has
30 attributes (30 real valued input features) and 569 instances of which 357
are of benign and 212 are of malignant type. We randomly divided the training
and test data sets. The first 285 data is used for training and the remaining 284
data is used for testing the performance of the different models.

All the models were trained and tested with the same set of data. As the
data set has two different classes we performed a 2-class binary classification.
The classification results for testing data set are shown in Table 2. It should
be noted that the obtained FNT classifier has smaller size and reduced features
and without a significant reduce in the accuracy. The important features for
constructing the FNT models are shown in Table 3 for Benign detection and
Table 4 for Malignant detection. In general, the ensemble of FNTs shows the
best classification rate. Receiver Operating Characteristics (ROC) analysis of
the FNTs, SEM and GEM models is shown in Table 5.

Table 4. Important variables selected by FNT algorithm automatically for Malignant
detection

FNTs Important variables
FNT1 x1,x5,x6,x7,x11,x12,x14,x16,x17,x20,x21,x29

FNT2 x2,x3,x6,x9,x15,x17,x23,x26,x27

FNT3 x4,x5,x6,x7,x10,x15,x16,x20,x21,x23,x24,x25,x26,x27,x28,x29

FNT4 x3,x4,x6,x12,x13,x17,x20,x22,x24,x26,x27,x29

FNT5 x7,x10,x13,x18,x23,x24,x26,x29

FNT6 x0,x7,x9,x14,x16,x19,x21,x22,x26,x27

Table 5. Comparison of false positive rate (fp) and true positive rate (tp) for FNT, NN,
WNN and ensemble classifiers

Cancer FNT1 FNT2 FNT3 FNT4
Type fp(%) tp(%) fp(%) tp(%) fp(%) tp(%) fp(%) tp(%)
Benign 3.84 91.71 14.56 95.03 9.71 91.72 6.80 95.58
Malignant 2.76 84.41 4.970 86.42 9.94 93.20 6.08 87.38
Cancer FNT5 FNT6 BEM GEM
Type fp(%) tp(%) fp(%) tp(%) fp(%) tp(%) fp(%) tp(%)
Benign 16.51 97.80 8.74 95.03 4.85 95.58 5.83 98.90
Malignant 7.730 88.35 8.29 92.23 5.52 95.15 2.21 96.12

5 Conclusion

In this paper, we presented the flexible neural tree models and their en-
semble models for the detection of breast cancer. As depicted in Table 2, the
empirical results are very encouraging. The best accuracy was offered by the
generalized ensemble method followed by the basic ensemble method. An
important advantage of the FNT model is the ability to reduce the number of
input variables as presented in Table 3 and Table 4. Because of this reason, it is
easy to visualize the variance of the individual FNT classifiers. ROC analysis
(Table 5) illustrates that FNT5 model has the highest false positive rate and the
FNT1 model has the lowest false positive rates for detecting benign and the
FNT3 model has the highest false positive rate and the GEM model has the
lowest false positive rates for detecting malignant cancer. The time required
to construct these models are not very much and hope these tools would as-
sist the physician’s effort to improve the currently available automated ways to
diagnose breast cancer.

Acknowledgments

This research was partially supported by the Natural Science Foundation
of China grant 60573065, and The Provincial Science and Technology Devel-
opment Program of Shandong grant SDSP2004-0720-03.

References

[1] DeSilva C.J.S., Choong P.L. and Attikiouzel Y., 1994, Artificial Neural
networks and Breast Cancer Prognosis, The Australian Computer Jour-
nal, Vol. 26, No. 1, pp. 78-81.

[2] The Weekend Australia, 2002, Health Section, pp. 13-14.

[3] David B.F., Eugene C. W., 1997, Edward M. B. and Vincent W. P., A
step toward computer-assisted mammography using evolutionary pro-
gramming and neural networks, Cancer Letters, Vol. 119, No. 1, pp.
93-97.

[4] Charles E. K. J., Linda M. R., Katherine A. S. and Peter H., 1997, Con-
struction of a Bayesian network for mammographic diagnosis of breast
cancer, Computers in Biology and Medicine, Vol. 27, No. 1, pp. 19-29.

[5] Shinsuke M., Satoru K., Naoyuki O., Tadao S., Takashi O., Masatoshi
H. and Akio S., 1989, An expert system for early detection of cancer
of the breast, Computers in Biology and Medicine, Vol. 19, No. 5, pp.
295-305.

[6] Barbara S. H. and Patricia G. M., 2001, Breast Cancer: Hormones and
Other Risk Factors, Maturitas, Vol. 38, No. 1, pp. 103-113.

[7] Jain R. and Abraham A., 2004, A Comparative Study of Fuzzy Classi-
fiers on Breast Cancer Data, Australiasian Physical And Engineering
Sciences in Medicine, Australia, Vol. 27, No. 4, pp. 147-152.

[8] Kennedy J. and Eberhart R.C., 1995, Particle Swarm Optimization, Proc.
of IEEE International Conference on Neural Networks, IV, pp. 1942-
1948.

[9] Chen Y., Yang B., Dong J., 2004, Nonlinear systems modelling via opti-
mal design of neural trees, International Journal of Neural ystems, Vol.
14, No. 2, pp. 125-137.

[10] Chen Y., Yang B., Dong J., Abraham A., 2005, Time-series forcasting
using flexible neural tree model, Information Science, Vol. 174, No. 3-4,
pp. 219-235.

[11] Merz J., and Murphy P.M., 1996, UCI repository of machine learning
databases, http://www.ics.uci.edu/- learn/MLRepository.html.

[12] Perrone M.P., and Cooper L.N., 1993, When networks disagree: ensem-
ble methods for hybrid neural networks, Neural Networks for Speech
and Image Processing by R.J. Mammone, ed., Chapman-Hall.

[13] Bishop C.M., 1995, Neural Networks for Pattern Recognition, Oxford
University Press, pp. 364-369.

[14] Ramasubramanian P. and Kannan A., 2004, Quickprop Neural Network
Ensemble Forecasting Framework for a Database Intrusion Prediction
System, Neural Information Processing, Vol. 5, No. 1, pp. 9-18.

[15] Zhou Z.-H., Wu J.-X., Tang W., 2002, Ensembling Neural Networks:
Many Could Be Better Than All, Artificial Intelligence, Vol. 137, No.
1-2, pp. 239-263.

[16] Granitto P.M., Verdes P.F., Ceccatto H.A., 2005, Neural network ensem-
bles: evaluation of aggregation algorithms, Artificial Intelligence, Vol.
163, No. 2, pp. 139-162.

[17] Maqsood I., Khan R., Abraham A., 2004, An ensemble of neural net-
works for weather forecasting, Neural Comput & Applic, Vol. 13, No. 1,
pp. 112-122.

[18] Salustowicz R.P., Schmidhuber J., 1997, Probabilistic Incremental Pro-
gram Evolution, Evolutionary Computation, Vol. 2, No. 5, pp. 123-141.

[19] Sharkey A.J.C. (Ed.): Combining Artificial Neural Nets, Springer, Lon-
don, (1999)

[20] Geman S., Bienenstock E., Doursat R., 1992, Neural networks and the
bias/variance dilemma, Neural Computation, Vol. 4, No. 1, pp. 1-58.

