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Abstract 

Long-term rainfall prediction is very important to countries thriving on agro-based economy. In general, 

climate and rainfall are highly non-linear phenomena in nature giving rise to what is known as "butterfly 

effect". The parameters that are required to predict the rainfall are enormously complex and subtle so 

that uncertainty in a prediction using all these parameters is enormous even for a short period. Soft 

computing is an innovative approach to construct computationally intelligent systems that are supposed 

to possess humanlike expertise within a specific domain, adapt themselves and learn to do better in 

changing environments, and explain how they make decisions. Unlike conventional artificial intelligence 

techniques the guiding principle of soft computing is to exploit tolerance for imprecision, uncertainty, 

robustness, partial truth to achieve tractability, and better rapport with reality. In this paper, we analysed 

87 years of rainfall data in Kerala state, the southern part of Indian Peninsula situated at latitude-

longitude pairs (8
o
29′ N - 76

o
57′ E). We attempted to train 5 soft computing based prediction models 

with 40 years of rainfall data. For performance evaluation, network predicted outputs were compared 

with the actual rainfall data. Simulation results reveal that soft computing techniques are promising and 

efficient. 

1. Introduction 

Rain is one of the nature's greatest gifts and in developing countries like India; the entire agriculture 

depends upon rain. It is thus a major concern to identify any trends for rainfall to deviate from its 

periodicity, which would disrupt the economy of the country. This fear has been aggravated due to threat 

by the global warming and green house effect. The geographical configuration of India with the three 



 

 
 

oceans, namely Indian Ocean, Bay of Bengal and the Arabian Sea bordering the peninsula gives her a 

climate system with two monsoon seasons and two cyclones interspersed with hot and cold weather 

seasons. The parameters that are required to predict the rainfall are enormously complex and subtle so 

that the uncertainty in a prediction using all these parameters even for a short period. The period over 

which a prediction may be made is generally termed the event horizon and in best results, this is not 

more than a week's time. Thus it is generally said that the fluttering wings of a butterfly at one corner of 

the globe may cause it to produce a tornado at another place geographically far away. Edward Lorenz 

(meteorologist at MIT) discovered this phenomenon in 1961 and is popularly known as the butterfly 

effect [15]. In our research, we aim to find out how well the proposed soft computing models are able to 

understand the periodicity in these patterns so that long-term predictions can be made. This would help 

one to anticipate with some degree of confidence the general pattern of rainfall to be expected in the 

coming years. In pace with the global interest in climatology, there has been a rapid updating of 

resources in India also to access and process climatological database. There are various data acquisition 

centres in the country that record daily rainfall along with other measures such as sea surface pressure, 

temperature etc. that are of interest to climatological processing. These centres are also associated to the 

World Meteorological Organization (WMO). 

We used an artificial neural network using backpropagation (variable learning rate), adaptive basis 

function neural network [12], neural network using scaled conjugate gradient algorithm and an Evolving 

Fuzzy Neural Network (EFuNN) [8] for predicting the rainfall time series [1] [11]. The soft computing 

models described above were trained on the rainfall data corresponding to a certain period in the past 

and cross validate the prediction made by the network over some other period. In section 2 and 3, we 

present some theoretical background about neural networks and neuro-fuzzy systems. In section 4, the 

experimental set up is explained followed by the discussions and simulation results. Conclusions are also 

provided towards the end. 

2. Artificial Neural Networks 

Artificial neural networks (ANNs) were designed to mimic the characteristics of the biological neurons 

in the human brain and nervous system [14]. The network “learns” by adjusting the interconnections 

(called weights) between layers. When the network is adequately trained, it is able to generalize relevant 



 

output for a set of input data. A valuable property of neural networks is that of generalisation, whereby a 

trained neural network is able to provide a correct matching in the form of output data for a set of 

previously unseen input data. Learning typically occurs by example through training, where the training 

algorithm iteratively adjusts the connection weights (synapses). Backpropagation (BP) is one of the most 

famous training algorithms for multilayer perceptrons. BP is a gradient descent technique to minimize 

the error E for a particular training pattern. For adjusting the weight ( ijw ) from the i-th input unit to the 

j-th output, in the batched mode variant the descent is based on the gradient E∇  (
ijδw

δE
) for the total 

training set: 

)1(nij∆wα*
ijδw

δE
ε*(n)ij∆w −+−=         (1) 

The gradient gives the direction of error E. The parameters ε and α are the learning rate and momentum 

respectively [3]. 

With standard steepest descent, the learning rate is held constant throughout the training. If the learning 

rate is too high, the algorithm may oscillate and become unstable. If the learning rate is too small, the 

algorithm will take too long to converge. It is not practical to determine the optimal setting for the 

learning rate before training, and, in fact, the optimal learning rate changes during the training process, 

as the algorithm moves across the performance surface [7]. The performance of the steepest descent 

algorithm can be improved by using an adaptive learning rate, which will keep the learning step size as 

large as possible while keeping learning stable. The learning rate is made adaptive to the complexity of 

the local error surface. If the new error exceeds the old error by more than a predefined ratio (typically 

1.04), the new weights are discarded. In addition, the learning rate is decreased (typically by 70%). 

Otherwise the new weights are kept. If the new error is less than the old error, the learning rate is 

increased (typically by 5%). Thus a near optimal learning rate is obtained for the local terrain. When a 

larger learning rate could result in stable learning, the learning rate is also increased. When the learning 

rate is too high to guarantee a decrease in error, it gets decreased until stable learning resumes. 



 

 
 

Adaptive Basis Function Neural Network (ABFNN) performs better than the standard BP networks in 

complex problems [12]. The ABFNN works on the principle that the neural network always attempt to 

map the target space in terms of its basis functions or node functions. In standard BP networks, this 

function is a fixed sigmoid function that can map between zero and plus one (or between minus one and 

plus one) the input applied to it from minus infinity to plus infinity. It has many attractive properties that 

made the BP an efficient tool in a wide verity of applications. However some studies conducted on the 

BP algorithm have shown that in spite of its wide spread acceptance, they systematically outperform 

other classification procedures only when the targeted space has a sigmoidal shape. This implies that one 

should choose a basis function such that the network may represent the target space as a nested sum of 

products of the input parameters in terms of the basis function. The ABFNN thus starts with the standard 

sigmoid basis function and alters its non-linearity by an algorithm similar to the weight update algorithm 

used in BP. Instead of the standard sigmoid function, ABFNN uses a variable sigmoid function defined 

as: 

a1

)xtanh(a
fO

+

+
=           (2) 

where a is the control parameter that is initially set to unity and is modified along with the connection 

weights along the negative gradient of the error function. Such a modification could improve the speed 

of convergence and accuracy with which the network could approximate the target space. 

In the Conjugate Gradient Algorithm (CGA) a search is performed along conjugate directions, which 

produces generally faster convergence than steepest descent directions. A search is made along the 

conjugate gradient direction to determine the step size, which will minimize the performance function 

along that line. A line search is performed to determine the optimal distance to move along the current 

search direction. Then the next search direction is determined so that it is conjugate to previous search 

direction. The general procedure for determining the new search direction is to combine the new steepest 

descent direction with the previous search direction. An important feature of the CGA is that the 

minimization performed in one step is not partially undone by the next, as it is the case with gradient 

descent methods. An important drawback of CGA is the requirement of a line search, which is 



 

computationally expensive. The Scaled Conjugate Gradient Algorithm (SCGA) [10] is basically 

designed to avoid the time-consuming line search at each iteration. SCGA combine the model-trust 

region approach, which is used in the Levenberg-Marquardt algorithm with the CGA. 

3. Neuro-Fuzzy Systems 

A neuro-fuzzy system [2] is a combination of ANN and Fuzzy Inference System (FIS) [5] [13] in such a 

way that neural network learning algorithms are used to determine the parameters of FIS. An even more 

important aspect is that the system should always be interpretable in terms of fuzzy if-then rules, because 

it is based on the fuzzy system reflecting vague knowledge. We used evolving fuzzy neural network [8] 

implementing a Mamdani type FIS [9] as illustrated in Figure 1. EFuNN have a five-layer structure as 

shown in Figure 2. The input layer represents input variables. The second layer of nodes represents fuzzy 

quantification of each input variable space. Each input variable is represented here by a group of 

spatially arranged neurons to represent a fuzzy quantization of this variable. Different membership 

functions can be attached to these neurons (triangular, Gaussian, etc.). The nodes representing 

membership functions can be modified during learning. New neurons can evolve in this layer if, for a 

given input vector, the corresponding variable value does not belong to any of the existing MF to a 

degree greater than a membership threshold. The third layer contains rule nodes that evolve through 

hybrid supervised/unsupervised learning. The rule nodes represent prototypes of input-output data 

associations, graphically represented as an association of hyper-spheres from the fuzzy input and fuzzy 

output spaces. Each rule node r is defined by two vectors of connection weights – W1 (r) and W2 (r), the 

latter being adjusted through supervised learning based on the output error, and the former being 

adjusted through unsupervised learning based on similarity measure within a local area of the input 

problem space. The fourth layer of neurons represents fuzzy quantification for the output variables. The 

fifth layer represents the real values for the output variables. EFuNN evolving algorithm used in our 

experimentation was adapted from [8]. 

4. Experimentation Setup for Training and Performance Evaluation 

Although the rainfall data from 1842 AD were recorded, there were many missing values in between and 

hence we had to restrict to periods for which a continuous time series was available. This was obtained 



 

 
 

for the period from 1893 to 1980. The rainfall data was standardised and we divided the data from 1893-

1933 as training set and data from 1934-1980 as test set. While the proposed neuro-fuzzy system is 

capable of adapting the architecture according to the problem we had to perform some initial 

experiments to decide the architecture of the neural network. Since rainfall has a yearly periodicity, we 

started with a network having 12 input nodes. Further experimentation showed that it was not necessary 

to include information corresponding to the whole year, but 3-month information centred over the 

predicted month of the fifth year in each of the 4 previous years would give good generalization 

properties.  

Thus, based on the information from the four previous years, the network would predict the amount of 

rain to be expected in each month of the fifth year.  We used the same architecture for all the three 

neural network learning algorithms. To have a performance comparison of the different learning 

techniques, the training was terminated after 1000 epochs.  Experiments were carried out on a Pentium II 

450MHz machine and the codes were executed using MATLAB and C++. The training was repeated 

three times after re-initialising the networks. Test data was presented to the network and the output from 

the network was compared with the actual data in the time series. The worst observed errors are 

reported. Following are the details of network training:  

EFuNN Training 

We used 5 membership functions for each input variable and the following evolving parameters: 

sensitivity threshold Sthr=0.999, error threshold Errthr=0.001. EFuNN uses a one pass training 

approach. Figure 3 illustrates the EFuNN training details and we obtained an RMSE of 0.0006.  

ANN Training 

For neural networks using BP, backpropagation with variable learning rate (BP-VLR) and SCGA, we 

used 1 input layer, 2 hidden layers and an output layer [12-12-12-1]. Input layer consists of 12 neurons 

corresponding to the input variables. The first and second hidden layer consists of 12 neurons. For the 

ABFNN network, we used only I hidden layer with 7 neurons. Training errors (RMSE) achieved are 

reported in Table 1. To have a performance evaluation between the 4 learning algorithms, we also 

trained a neural network (12-7-1) with one hidden layer containing 7 neurons and the training was 



 

terminated after 1000 epochs for all the four learning methods. Figure 4 shows the training performance 

and convergence of the four neural network algorithms. 

Test Results 

Table 1 summarizes the comparative performance of EFuNN and ANN learning algorithms. Figure 5 

depicts the test results given by EFuNN algorithm. Lowest RMSE was obtained using EFuNN (0.090) 

and it was 0.095, 0.094, 0.092 and 0.093 for BP, BP-VLR and SCG and ABF neural networks 

respectively. Figure 6 depicts the comparative performance between the different soft computing 

models. 

EFuNN outperformed neurocomputing techniques with the lowest RMSE test error and performance 

time. EFuNN adopts a one-pass (one epoch) training technique, which is highly suitable for online 

learning. Hence online training can incorporate further knowledge very easily. Compared to pure BP and 

BP-VLR, ABFNN and SCGA converged much faster. Alternatively, BP training needs more epochs 

(longer training time), to achieve better performance. Compared to ANN, an important advantage of 

neuro-fuzzy model is its reasoning ability (if-then rules) of any particular state. ABFNN has also given 

promising results with the smallest network architecture among neural networks. 

5. Conclusions 

In this paper, we attempted to forecast the rainfall (one month ahead) based on soft computing 

techniques. As the RMSE values on test data are comparatively less, the prediction models are reliable. 

As evident from Figure 5, there have been few deviations of the predicted rainfall value from the actual. 

In some cases it is due to delay in the actual commencement of monsoon, EI-Nino Southern Oscillations 

(ENSO) resulting from the pressure oscillations between the tropical Indian Ocean and the tropical 

Pacific Ocean and their quasi periodic oscillations [4]. As climate and rainfall prediction involves 

tremendous amount of imprecision and uncertainty, neuro-fuzzy technique might warrant the ideal 

prediction model. The proposed prediction models based on soft computing on the other hand are easy to 

implement and produces desirable mapping function by training on the given data set. A network 

requires information only on the input variables for generating forecasts. In our experiments, we used 

only 40 years training data to evaluate the learning capability. Network performance could have been 



 

 
 

further improved by providing more training data. Moreover, the considered connectionist models are 

very robust, capable of handling the noisy and approximate data that are typical in weather data, and 

therefore should be more reliable in worst situations. Choosing suitable parameters for the soft 

computing models is more or less a trial and error approach. Optimal results will depend on the selection 

of parameters. Selection of optimal parameters may be formulated as a evolutionary search [6] to make 

SC models fully adaptable and optimal according to the requirement. 
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Table 1. Test results and performance comparison of rainfall forecasting 

 
EFuNN 

ANN 

(BP) 

ANN 

(VLR) 

ANN  

(SCGA) 

ANN 

(ABF) 

Learning epochs 1 10000 10000 600 1000 

Training error (RMSE) 0.0006 0.0954 0.0875 0.0780 0.0800 

Testing error (RMSE) 0.0901 0.0948 0.0936 0.0923 0.0930 

Computational load (in billion 

flops) 
0.065 8.82 8.75 1.26 - 

 



 

 
 

List of Figures 

 

Figure 1. Mamdani fuzzy inference system 

 

 

Figure 2. Architecture of EFuNN 
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Figure 3. Training results for EFuNN 



 

 

Figure 4. Convergence of neural network learning algorithms (for 1000 epochs). 
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Figure 5. Test results showing the forecast and desired values using EFuNN 



 

 
 

 

Figure 6. Test results showing monthly prediction of rainfall for 10 years using the different SC models 


