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Abstract: Particle Swarm Optimisation (PSO) algorithm is a stochastic search technique, which
has exhibited good performance across a wide range of applications. However, very often for
multimodal problems involving high dimensions, the algorithm tends to suffer from premature
convergence. Analysis of the behaviour of the particle swarm model reveals that such premature
convergence is mainly due to the decrease of velocity of particles in the search space that leads to
a total implosion and ultimately fitness stagnation of the swarm. This paper introduces Turbulence
in the Particle Swarm Optimisation (TPSO) algorithm to overcome the problem of stagnation. The
algorithm uses a minimum velocity threshold to control the velocity of particles. The parameter,
minimum velocity threshold of the particles is tuned adaptively by a fuzzy logic controller
embedded in the TPSO algorithm, which is further called as Fuzzy Adaptive TPSO (FATPSO).
We evaluated the performance of FATPSO and compared it with the Standard PSO (SPSO), Genetic
Algorithm (GA) and Simulated Annealing (SA). The comparison was performed on a suite of 10
widely used benchmark problems for 30 and 100 dimensions. Empirical results illustrate that the
FATPSO could prevent premature convergence very effectively and it clearly outperforms SPSO
and GA.
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1 Introduction

Particle Swarm Optimisation (PSO) algorithm is mainly
inspired by social behaviour patterns of organisms that
live and interact within large groups. In particular, PSO
incorporates swarming behaviours observed in flocks of
birds, schools of fish or swarms of bees and even human
social behaviour, from which the idea of swarm intelligence is
emerged (Kennedy and Eberhart, 2001). It could be applied to
solve various function optimisation problems or the problems
that can be transformed to function optimisation problems.
PSO has exhibited good performance across a wide range of
applications (Boeringer and Werner, 2004; Du et al., 2005;
Lu et al., 2003; Parsopoulos and Vrahatis, 2002; Phan et al.,
2004; Schute and Groenwold, 2005; Sousa et al., 2004; Ting
et al., 2003). However, its performance deteriorates as the
dimensionality of the search space increases, especially for
multimodal optimisation problems (Kennedy and Spears,
1998; Parsopoulos and Vrahatis, 2004). PSO algorithm often
demonstrates faster convergence speed in the first phase
of the search, and then slows down or even stops as the
number of generations is increased. Once the algorithm
slows down, it is difficult to achieve better fitness values.
This state is called as stagnation or premature convergence.
The trajectory of particles was given a lot of importance
rather than their velocities. In this paper, we attempt to
discuss the relation between the algorithm convergence and
the velocities of the particles. It is found that the stagnation
state is mainly due to a decrease of velocity of particles in the
search space which leads to a total implosion and ultimately
fitness stagnation of the swarm. We introduce Turbulent
Particle Swarm Optimisation (TPSO) algorithm to improve
the optimisation performance and overcome the premature
convergence problem. The basic idea is to drive those lazy
particles and get them to explore new search spaces. TPSO
uses a minimum velocity threshold to control the velocity of
particles and also avoids clustering of particles and maintains
diversity of population in the search space. The minimum
velocity threshold of the particles is tuned adaptively by using
a fuzzy logic controller in the algorithm, which is further
called as Fuzzy Adaptive TPSO (FATPSO).

This paper is organised as follows. PSO is reviewed briefly
and the effects on the change of the velocities of particles
are analysed in Section 2. In Section 3, we describe the
TPSO model and the fuzzy adaptive processing method.
Experiment settings, results and discussions are given in
Section 4 followed by some conclusions in the final section.

2 Particle swarm optimisation

PSO refers to a relatively new family of algorithms that
may be used to find optimal (or near optimal) solutions
to numerical and qualitative problems. Some researchers
have done much work on its study and development during
the recent years (Jiang and Etorre, 2005; Mahfouf et al.,
2004; Parsopoulos and Vrahatis, 2004; van den Bergh, 2002).
We review briefly the standard particle swarm model and then
analyse the various effects in the change in the velocities of
particles.

2.1 Standard particle swarm model

The particle swarm model consists of a swarm of particles,
which are initialised with a population of random candidate
solutions. They move iteratively through the d-dimension
problem space to search the new solutions, where the fitness
f can be calculated as the certain qualities measure. Each
particle has a position represented by a position-vector �pi

(i is the index of the particle), and a velocity represented
by a velocity-vector �vi . Each particle remembers its own
best position so far in a vector �p#

i and its j th dimensional
value is p#

ij . The best position-vector among the swarm so
far is then stored in a vector �p∗ and its j th dimensional value
is p∗

j . During the iteration time t , the update of the velocity
from the previous velocity to the new velocity is determined
by Equation (1). The new position is then determined by
the sum of the previous position and the new velocity
by Equation (2).

vij (t) = wvij (t − 1) + c1r1(p
#
ij (t − 1) − pij (t − 1))

+ c2r2(p
∗
j (t − 1) − pij (t − 1)) (1)

pij (t) = pij (t − 1) + vij (t) (2)

where r1 and r2 are the random numbers, uniformly
distributed within the interval [0,1] for the j th dimension
of ith particle. c1 is a positive constant, called as coefficient
of the self-recognition component, c2 is a positive constant,
called as coefficient of the social component. The variable
w is called as the inertia factor, which value is typically setup
to vary linearly from 1 to near 0 during the iterated processing.
From Equation (1), a particle decides where to move next,
considering its own experience, which is the memory of its
best past position and the experience of its most successful
particle in the swarm.
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In the particle swarm model, the particle searches the
solutions in the problem space within a range [−s, s]
(if the range is not symmetrical, it can be translated to
the corresponding symmetrical range). In order to guide
the particles effectively in the search space, the maximum
moving distance during one iteration is clamped in between
the maximum velocity [−vmax, vmax] given in Equation (3)
and similarly for its moving range given in Equation (4):

vi,j = sign(vi,j ) min
(∣∣vi,j

∣∣ , vmax
)

(3)

pi,j = sign(pi,j ) min
(∣∣pi,j

∣∣ , pmax
)

(4)

The value of vmax is ρ × s, with 0.1 ≤ ρ ≤ 1.0 and is usually
chosen to be s, that is, ρ = 1.

2.2 Velocities analysis in particle swarm

Some previous studies have discussed the trajectory of
particles and the convergence of the algorithm (Clerc
and Kennedy, 2002; Trelea, 2003; van den Bergh, 2002).
It has been shown that the trajectories of the particles
oscillate as different sinusoidal waves and converge quickly,
sometimes prematurely. We analyse the effects of the change
in the velocities of particles.

The gradual change of the particle’s velocity can be
explained geometrically. During each iteration, the particle
is attracted towards the location of the best fitness achieved
so far by the particle itself and by the location of the
best fitness achieved so far across the whole swarm. From
Equation (1), vi,j can attain a smaller value, but if the
second term and the third term in RHS of Equation (1)
are both small, it cannot resume a larger value and could
eventually loose the exploration capabilities in the future
iterations. Such situations could occur even in the early stages
of the search. When the second term and the third term in
RHS of Equation (1) are zero, vi,j will be damped quickly
with the ratio of w. In other words, if a particle’s current
position coincides with the global best position/particle, the
particle will only move away from this point if its previous
velocity and w are non-zero. If their previous velocities are
very close to zero, then all the particles will stop moving
once they catch up with the global best particle, which
many lead to premature convergence. In fact, this does not
even guarantee that the algorithm has converged to a local
minimum and it merely means that all the particles have
converged to the best position discovered so far by the swarm.
This state owes to the second term and the third term in the
RHS of Equation (1), the cognitive components of the PSO.
But if the cognitive components of the PSO algorithm are
invalidated, all particles always search the solutions using
the initial velocities. Then the algorithm is merely a
degenerative stochastic search without the characteristics
of PSO.

3 Turbulent swarm optimisation

In this section, we introduce a new velocity update approach
for the particles in PSO and analyse its effect on the particle’s
behaviour. We also illustrate a Fuzzy Logic Controller (FLC)
scheme to adaptively control the parameters (Herrera and
Lozano, 2003; Mark and Shay, 2005; Yun and Gen, 2003).

3.1 Velocity update of the particles

As discussed in the previous section, one of the main reason
for reason for premature convergence of PSO is due to the
stagnation of the particles exploration of a new search space.
We introduce a strategy to drive those lazy particles and
let them explore better solutions. If a particle’s velocity
decreases to a threshold vc, a new velocity is assigned using
Equation (6). Thus, we present the TPSO using a new velocity
update equations:

vij (t) = wv̂ + c1r1(x
#
ij (t − 1) − xij (t − 1))

+ c2r2(x
∗
j (t − 1) − xij (t − 1))

(5)

v̂ =
{

vij if
∣∣vij

∣∣ ≥ vc

u(−1, 1)vmax/ρ if
∣∣vij

∣∣ < vc

(6)

where u(−1, 1) is the random number, uniformly distributed
with the interval [−1, 1] and ρ is the scaling factor to
control the domain of the particle’s oscillation according
to vmax. vc is the minimum velocity threshold, a tunable
threshold parameter to limit the minimum of the particles’
velocity. Figure 1 illustrates the trajectory of a single particle
in Standard Particle Swarm Optimisation (SPSO) and TPSO,
respectively.

Figure 1 Trajectory of a single particle
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The change of the particle’s situation is directly correlated
to two parameter values, vc and ρ. A large vc shortens the
oscillation period and it provides a great probability for the
particles to leap over local minima using the same number
of iterations. But a large vc compels particles in the quick
‘flying’ state, which leads them not to search the solution and
forcing them not to refine the search. In other words, a large
vc facilitates a global search while a smaller value facilitates
a local search. By changing it dynamically, the search ability
is dynamically adjusted. The value of ρ changes directly the
particle oscillation domain. It is possible for particles not to
jump over the local minima if there would be a large local
minimum available in the objective search space. But the
particle trajectory would more prone to oscillate because of a
smaller value of ρ. For the desired exploration–exploitation
trade-off, we divide the particle search into three stages. In
the first stage the values for vc and ρ are set at large and
small values, respectively. In the second stage, vc and ρ

are set at medium values and in the last stage, vc is set at
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a small value and ρ is set at a large value. This enable the
particles to take very large steps to explore solutions in the
early stages, by scanning the whole solution space for good
local minima and then in the final stages particles perform a
fine grain search. The use of fuzzy logic would be suitable
for dynamically tuning the velocity threshold, since it starts
a run with an initial value which is changed during the run.
By using the fuzzy control approach, the parameters can be
adaptively regulated according to the problem environment.

3.2 Fuzzy parameter control

A FLC is composed of a knowledge base, that includes the
information given by the expert in the form of linguistic
control rules, a fuzzification interface, which has the effect
of transforming crisp data into fuzzy sets, an inference
system, that uses them together with the knowledge base
to make inference by means of a reasoning method and a
defuzzification interface, that translates the fuzzy control
action thus obtained to a real control action using a
defuzzification method (Cordón et al., 1997). In our
algorithm, two variables are selected as inputs to the fuzzy
system: the Current Best Performance Evaluation (CBPE)
(Shi and Eberhart, 2001; Shi et al., 1999) and the Current
Velocity (CV) of the particle. For adapting to a wide range of
optimisation problems, CBPE is normalised as Equation (7):

NCBPE = CBPE − CBPEmin

CBPEmax − CBPEmin
(7)

where CBPEmin is the estimated (or real) minimum, CBPEmax

is the worst solution to the minimisation problem, which
usually is the CBPE at half the number of iterations. If we do
not have any prior information about the objective function
and if it is difficult to estimate CBPEmin and CBPEmax, we
can do some preliminary experiments by decreasing linearly
from 1 to 0 during the run. One of the output variables is
ρ, the scaling factor to control the domain of the particle’s
oscillation. Another is V ck, which controls the change of the
velocity threshold according to Equation (8):

vc = e − [10(1 + V ck)] (8)

The fuzzy inference system is listed briefly as follows:

[System]
Name=‘FAT PSO’

[Input1] Name=‘NCBPE’
Range=[0 1]
NumMFs=3
MF1=‘Low’:‘gaussmf’, [0.005 0]
MF2=‘Medium’:‘gaussmf’, [0.03 0.1]
MF3=‘High’:‘gaussmf’, [0.25 1]

[Input2]
Name=‘CV ’
Range=[0 1e-006]
NumMFs=2
MF1=‘Low’:‘trapmf’, [0 0 1e-030 1e-020]
MF2=‘High’:‘trapmf’, [1e-010 1e-008 1e-006 1e-006]

[Output1]
Name=‘V ck’
Range=[-1 2.2]
NumMFs=3
MF1=‘Low’:‘trimf’, [-1 -0.8 -0.5]
MF2=‘Medium’:‘trimf’, [-0.6 0 0.2]
MF3=‘High’:‘trimf’, [0.1 1.1 2.2]

[Output2]
Name=‘ρ’
Range=[1 120]
NumMFs=3
MF1=‘Small’:‘trimf’, [1 1 4]
MF2=‘Medium’:‘trimf’, [2.214 10.71 59.29]
MF3=‘Large’:‘trimf’, [47.15 120 120]

[Rules]
1 1, 3 0 (1) : 1
2 0, 2 0 (1) : 1
3 2, 1 0 (1) : 1
1 1, 0 3 (1) : 2
2 0, 0 2 (1) : 2
3 2, 0 1 (1) : 2

In the above mentioned list, there are three parts: the first part
is the configuration of the fuzzy system, the second one is the
definition of the membership functions and the third one is
the rule base. There are two inputs and two outputs based on
six rules. In the rule base, the first two columns correspond to
the input variables, the second two columns correspond to the
output variables, the fifth column displays the weight applied
to each rule and the sixth column is short form that indicates
whether this is an AND (1) rule or an OR (2) rule. The
numbers in the first four columns refer to the index number
of the membership function, in which the number 1 encodes
fuzzy set ‘Low’, 2 encodes ‘Medium’ and 3 encodes ‘High’.
For example, the first rule is ‘If (NCBPE is Low) and
(CV is Low) then (V ck is High) with the weight 1’.
The general structure of the FATPSO is illustrated in
Algorithm 1.

Algorithm 1 FATPSO
01. Initialize parameters and the particles
02. While (the end criterion is not met) do
03. t = t + 1
04. Calculate the fitness value of each particle
05. x∗ = argminn

i=1(f (x∗(t − 1)), f (x1(t)),

06. f (x2(t)), · · · , f (xi(t)), · · · , f (xn(t)))

07. For i= 1 to n

08. x#
i (t) = argminn

i=1(f (x#
i (t − 1)), f (xi(t))

09. For j = 1 to d

10. If abs(vij ) < 1e − 6
11. Obtain the velocity threshold
12. {
13. fismat = readfis(‘FAT PSO.f is’)
14. FO = evalfis([NCBPE CV ], fismat)
15. }
16. Endif
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Algorithm 1 FATPSO (continued)
17. Update the j -th dimension value of �xi

18. and �vi according to Eqs. (1), (2) and (3)
19. Next j

20. Next i

21. End While

4 Experiments and discussions

In our experiments, the algorithms used for comparison
were mainly SPSO (Eberhart and Shi, 1998), FATPSO,
as well as Genetic Algorithm (GA) (Cantu-Paz, 2000) and
Simulated Annealing (SA) (Orosz and Jacobson, 2002; Triki
et al., 2005). The four algorithms share many similarities.
GA and SA are powerful stochastic global search and
optimisation methods, which are also inspired from the nature
like the PSO.

GAs mimic an evolutionary natural selection process.
Generations of solutions are evaluated according to a fitness
value and only those candidates with high fitness values are
used to create further solutions via crossover and mutation
procedures.

SA is based on the manner in which liquids freeze
or metals recrystalise in the process of annealing. In an
annealing process, a melt, initially at high temperature
and disordered, is slowly cooled so that the system at
any time is approximately in thermodynamic equilibrium.
In terms of computational simulation, a global minimum
would correspond to such a ‘frozen’(steady) ground state at
the temperature T = 0.

Both methods are valid and efficient methods in numeric
programming and have been employed in various fields due
to their strong convergence properties. In our experiments,
the specific parameter settings for each of the considered
algorithms are described in Table 1 (Eiben et al., 1999).
Each algorithm was tested with all the numerical functions
shown in Table 2. The first two functions, namely
Rosenbrock’s and Quadric function, have a single minimum,
while the other functions are highly multimodal with multiple
local minima. A new function, Generalised Shubert was
constructed temporarily for which global minimum function
is unknown for us. It is also useful for us to validate the
algorithms without knowing the optimal value. Some of
the functions have the sum of their variables, some of
them have the product (multiplying), some of them have
dimensional effect (ixi). We tested the algorithms on the
different functions in 30 and 100 dimensions, yielding a total
of 20 numerical benchmarks. For each of these functions, the
goal was to find the global minima. Each algorithm (for each
benchmark) was repeated 10 times with different random
seeds. Each trial used a fixed number of 18,000 iterations.
The objective functions were evaluated 360,000 times in each
trial. Since the swarm size in all PSOs was 20, the size of the
population in GA was 20 and the number operations before
temperature adjustment (SA) were 20. The average fitness
values of the best solutions throughout the optimisation run
were recorded and the averages and the standard deviations
were calculated from the 10 different trials. The standard
deviation indicates the differences in the results during the
10 different trials.

Table 1 Parameter settings for the algorithms

SPSO

Swarm size 20

Self-recognition coefficient c1 1.49

Social coefficient c2 1.49

Inertia weight w 0.9 → 0.1

FATPSO

Swarm size 20

Self-recognition coefficient c1 1.49

Social coefficient c2 1.49

Inertia weight w 0.7

GA

Size of the population 20

Probability of crossover 0.8

Probability of mutation 0.02

SA

Number operations before 20

temperature adjustment

Number of cycles 10

Temperature reduction factor 0.85

Vector for control step of 2

length adjustment

Table 2 Numerical benchmark functions

Rosenbrock (f1):

f1 = ∑n

i=1

(
100

(
xi+1 − x2

i

)2 + (xi − 1)2
)
;

�x ∈ [−2.048, 2.048]n,

min(f1(�x∗)) = f1(�1) = 0

Quadric (f2):

f2 = ∑n

i=1

( ∑i

j=1 xj

)2
;

�x ∈ [−100, 100]n,

min(f2(�x∗)) = f2(�0) = 0

Schwefel 2.22 (f3):

f3 = ∑n

i=1 |xi | + ∏n

i=1 |xi |;
�x ∈ [−10, 10]n,

min(f3(�x∗)) = f3(�0) = 0

Schwefel 2.26 (f4):

f4 = 418.9829n − ∑n

i=1(xisin(
√|xi |));

�x ∈ [−500, 500]n,

min(f4(�x∗)) = f4( �420.9687) ≈ 0

Levy (f5):

f5(�x) = π/n
(
k sin2(πy1) + ∑n−1

i=1 ((yi − a)2

(1 + k sin2(πyi+1))) + (yn − a)2
)

,

yi = 1 + 1/4(xi − 1), k = 10, a = 1;

�x ∈ [−10, 10]n,

min(f5(�x∗)) = f5(�1) = 0
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Table 2 Numerical benchmark functions (continued)

Generalised Shubert (f6):

f6 = ∏n

i=1

∑5
j=1(j cos((j + 1)xi + j));

�x ∈ [−10, 10]n,

min(f6(�x∗)) is unknown

Rastrigin (f7):

f7 = ∑n

i=1

(
x2

i − 10 cos(2πxi) + 10
)

�x ∈ [−5.12, 5.12]n,

min(f7(�x∗)) = f7(�0) = 0

Griewank (f8):

f8 = 1/4000
∑n

i=1 x2
i − ∏n

i=1 cos
(
xi/

√
i
) + 1;

�x ∈ [−300, 300]n,

min(f8(�x∗)) = f8(�0) = 0

Ackley (f9):

f9 = −20 exp
( − 0.2

√
1/n

∑n

i x2
i

)
− exp

(
1/n

∑n

i=1 cos(2πxi)
) + 20 + e;

�x ∈ [−32, 32]n,

min(f9(�x∗)) = f9(�0) = 0

Zakharov (f10):

f10 = ∑n

i x2
i + ( ∑n

i 1/2ixi

)2 + ( ∑n

i 1/2ixi

)4
;

�x ∈ [−10, 10]n,

min(f10(�x∗)) = f10(�0) = 0

Figures 2–11 illustrate the mean best function values for
the ten functions with two different dimensions (i.e. 30-
and 100-D) using the four algorithms. Each algorithm for
different dimensions of the same objective function has
similar performance. But in general, the higher the dimension
is, the higher the fitness values are. It is observed that for
almost all algorithms, the solutions get trapped in a local
minimum within the first 2000 iterations except for FATPSO.
For the low dimensional problems, SA is usually a cost-
efficient choice. For example, SA for 30-D f8 has a good
performance than that in other situations. It is interesting
that even if other algorithms are very close to or better than
FATPSO in 30-D benchmarks, but a very large difference
emerges in the case of 100-D benchmark problems. FATPSO
becomes much better than other algorithms in general besides
for f4. The averages and the standard deviations for 10 trials
are showed in Table 3. The larger the averages are, wider
the standard deviations are usually. There is not too large
difference of the standard deviations between the different
algorithms for the same benchmark functions. Referring
to the empirical results depicted in Table 3, for most of
considered functions, FATPSO demonstrated a consistent
performance pattern among all the considered algorithms.
FATPSO performed extremely well with the exception of 30-
D f4, 100-D f4, 30-D f5, 30-D f10, in which the results have
little difference between the considered algorithms. It is to
be noted that FATPSO could be an ideal choice for solving
complex problems (e.g. f2) when all other algorithms failed
to give a better solution.

Figure 2 30-D Quadric (f2) function performance
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Figure 3 100-D Quadric (f2) function performance
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Figure 4 30-D Schwefel 2.26 (f4) function performance
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Figure 5 100-D Schwefel 2.26 (f4) function performance
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Figure 6 30-D Levy (f5) function performance
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Figure 7 100-D Levy (f5) function performance

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
10

−15

10
−10

10
−5

10
0

10
5

Iteration

F
it

n
es

s

GA
SA
SPSO
FATPSO

Figure 8 30-D Griewank (f8) function performance
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5 Conclusion

We introduced the TPSO as an alternative method to
overcome the problem of premature convergence in the
conventional PSO algorithm. TPSO uses a minimum
velocity threshold to control the velocity of particles.
TPSO mechanism is similar to a turbulence pump, which
supply some power to the swarm system. The basic
idea is to control the velocity the particles to get out
of possible local optima and continue exploring optimal

Figure 9 100-D Griewank (f8) function performance
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Figure 10 30-D Zakharov (f10) function performance
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Figure 11 100-D Zakharov (f10) function performance
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search spaces. The minimum velocity threshold can make
the particle continue moving and maintain the diversity of
the population until the algorithm converges. We proposed
a fuzzy logic-based system to tune adaptively the velocity
threshold, which is further called as FATPSO. We evaluated
and compared the performance of SPSO, FATPSO, GA and
SA algorithms on a suite of 20 widely used benchmark
problems. The results from our research demonstrated
that FATPSO generally outperforms the other algorithms,
especially for high dimensional, multimodal functions.
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Table 3 Comparing the results for the function optimisation problems

f D SPSO FATPSO GA SA

f1 30 25.4594 1.1048 × 10−004 222.9510 29.0552
±16.5424 ±0.0017 ±26.4874 ±4.8291

100 228.6963 6.9026 × 10−004 7.2730 × 10003 138.3233
±675.7348 ±0.0080 ±459.1044 ±38.1029

f2 30 1.1927 × 10005 2.9699 3.7843 × 10004 382.7578
±41.3785 ±24.9744 ±4.4308 × 10003 ±103.9384

100 9.6398 × 10005 54.0376 4.0615 × 10005 9.5252 × 10003

±3.7652 × 10004 ±482.4480 ±2.2613 × 10004 ±4.8500+003

f3 30 2.3732 × 10−008 5.9520 × 10−006 20.2291 0.4991
±0.3763 ±1.3009 × 10−005 ±1.4324 ±1.8212

100 55.5606 9.2702 × 10−004 1.2391 × 10013 23.4349
±2.3719 × 10−007 ±2.6465 ±1.2269 × 10017 ±5.0520

f4 30 0.0501 0.0279 4.5094 × 10003 4.9754 × 10003

±0.2215 ±0.1086 ±294.7204 ±4.2394
100 0.0481 0.0220 2.7101 × 10004 1.6131 × 10004

±0.7209 ±0.6902 ±528.3332 ±51.7519

f5 30 1.4685 × 10−031 1.5535 × 10−030 1.0734 0.1617
±0.0021 ±2.6040 × 10−012 ±0.1996 ±0.4583

100 0.2806 2.6011 × 10−011 11.4534 2.8817
±2.1761 ±0.1219 ±0.4760 ±0.4526

f6 30 −7.4305 × 10033 −4.0465 × 10034 −5.1931 × 10020 −1.5457 × 10032

±2.3497 × 10033 ±1.2176 × 10034 ±6.9217 × 10020 ±1.2010 × 10016

100 −2.9776 × 10096 −3.2111 × 10114 −1.5347 × 10055 −3.0040 × 10104

±1.2330 × 10096 ±2.4430 × 10114 ±9.4580 × 10054 ±4.2442 × 10101

f7 30 33.7291 8.4007 × 10−010 204.0560 32.7997
±17.7719 ±9.3676 ±6.8450 ±6.9936

100 391.0421 19.9035 1.2070 × 10003 177.8810
±176.3618 ±115.9034 ±23.8156 ±37.7808

f8 30 0.0177 0.0102 6.8463 0.3193
±0.3157 ±0.0149 ±0.6060 ±1.7880

100 0.4400 0.0720 179.5966 31.4270
±14.4633 ±0.6945 ±7.3908 ±11.4656

f9 30 0.6206 5.4819 × 10−004 1.7437 0.6606
±0.2996 ±0.0086 ±0.0427 ±0.0657

100 1.0666 0.0011 2.3570 1.0167
±0.3921 ±0.0059 ±0.0079 ±0.0532

f10 30 2.0098 × 10−007 5.911 × 10−011 659.0997 62.2253
±52.8218 ±0.0626 ±12.0276 ±46.5389

100 1.3223 × 10003 90.1373 2.8632 × 10003 1.5625 × 10003

±1.4259 × 10003 ±1.7697 × 10004 ±4.7935 × 10−013 ±294.7468
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