
ARTICLE IN PRESS

Engineering Applications of Artificial Intelligence 22 (2009) 343–350
Contents lists available at ScienceDirect
Engineering Applications of Artificial Intelligence
0952-19

doi:10.1

� Corr

E-m

swagata

sambar
journal homepage: www.elsevier.com/locate/engappai
Design of fractional-order PIlDm controllers with an improved
differential evolution
Arijit Biswas a, Swagatam Das a,�, Ajith Abraham b, Sambarta Dasgupta a

a Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India
b Norwegian University of Science and Technology, Norway
a r t i c l e i n f o

Article history:

Received 21 April 2008

Accepted 4 June 2008
Available online 2 September 2008

Keywords:

Differential evolution

Fractional calculus

PID controllers

Fractional-order controllers

Evolutionary algorithms
76/$ - see front matter & 2008 Elsevier Ltd. A

016/j.engappai.2008.06.003

esponding author. Tel.: +9133 2528 2717.

ail addresses: arijitbiswas87@gmail.com (A. B

mdas19@yahoo.co.in (S. Das), ajith.abraham@

tadg@gmail.com (S. Dasgupta).
a b s t r a c t

Differential evolution (DE) has recently emerged as a simple yet very powerful technique for real

parameter optimization. This article describes an application of DE to the design of fractional-order

proportional–integral–derivative (FOPID) controllers involving fractional-order integrator and frac-

tional-order differentiator. FOPID controllers’ parameters are composed of the proportionality constant,

integral constant, derivative constant, derivative order and integral order, and its design is more

complex than that of conventional integer-order proportional–integral–derivative (PID) controller. Here

the controller synthesis is based on user-specified peak overshoot and rise time and has been

formulated as a single objective optimization problem. In order to digitally realize the fractional-order

closed-loop transfer function of the designed plant, Tustin operator-based continuous fraction

expansion (CFE) scheme was used in this work. Several simulation examples as well as comparisons

of DE with two other state-of-the-art optimization techniques (Particle Swarm Optimization and binary

Genetic Algorithm) over the same problems demonstrate the superiority of the proposed approach

especially for actuating fractional-order plants. The proposed technique may serve as an efficient

alternative for the design of next-generation fractional-order controllers.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Fractional-order dynamic systems and controllers, which are
based on fractional-order calculus (Oldham and Spanier, 1974;
Lubich, 1986; Miller and Ross, 1993), have been gaining attention
in several research communities since the last few years
(Oustaloup, 1981; Chengbin and Hori, 2004). In Podlubny
(1999b), it was advocated that fractional-order calculus would
play a major role in a smart mechatronic system. Podlubny
proposed the concept of the fractional-order PIlDm controllers and
demonstrated the effectiveness of such controllers for actuating
the responses of fractional-order systems in 1999. A few recent
works in this direction as well as schemes for digital and
hardware realizations of such systems can be traced in Chen
et al. (2004), Nakagawa and Sorimachi (1992) and Chen et al.
(2005). Vinagre et al. (2000) proposed a frequency domain
approach based on expected crossover frequency and phase
margin for the same controller design. Petras came up with a
ll rights reserved.

iswas),

ieee.org (A. Abraham),
method based on the pole distribution of the characteristic
equation in the complex plane (Petras, 1999). Dorcak et al.
(2001) proposed a state-space design approach based on feedback
pole placement. The fractional controller can also be synthesized
by cascading a proper fractional unit to an integer-order controller
(Chengbin and Hori, 2004).

Proportional–integral–derivative (PID) controllers have been
used for several decades in industries for process control
applications. The reason for their wide popularity lies in the
simplicity of design and good performance including low
percentage overshoot and small settling time for slow process
plants (Astrom and Hagglund, 1995). In fractional-order propor-
tional–integral–derivative (FOPID) controller, I and D operations
are usually of fractional order; therefore, besides setting the
proportional, derivative and integral constants Kp, Td, Ti we have
two more parameters: the order of fractional integration l and
that of fractional derivative m. Finding an optimal set of values for
Kp, Ti, Td, l and m to meet the user specifications for a given process
plant calls for real parameter optimization in five-dimensional
hyperspace.

Differential evolution (DE) (Price et al., 2005; Storn and Price,
1997) has recently become quite popular as a simple and efficient
scheme for global optimization over continuous spaces. It has
reportedly outperformed many types of evolutionary algorithms

www.sciencedirect.com/science/journal/eaai
www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2008.06.003
mailto:arijitbiswas87@gmail.com
mailto:swagatamdas19@yahoo.co.in
mailto:ajith.abraham@ieee.org
mailto:sambartadg@gmail.com


ARTICLE IN PRESS

A. Biswas et al. / Engineering Applications of Artificial Intelligence 22 (2009) 343–350344
and search heuristics like PSO when tested over both benchmarks
and real-world problems (Vesterstrøm and Thomson, 2004). In
this work, a state-of-the-art version of DE has been used for
finding the optimal values of Kp, Ti, Td, l and m. The design method
focuses on optimum placing of the dominant closed-loop poles
and incorporate the constraints thus obtained using DE algorithm.
The optimization-based design process has been tested for
actuating the response of four process plants of which two are
of integer order and two are of fractional order. The performance
of the DE-based PIlDm controller has been compared with two
other fractional-order controllers designed with the state-of-the-
art versions of two recent swarm intelligence-based techniques
well known as the Hierarchical Particle Swarm Optimizer with
Time Varying Acceleration Coefficients (HPSO-TVAC) (Ratnaweera
and Halgamuge, 2004) and the genetic algorithm (Holland, 1975;
Cao et al., 2005). Such comparison reflects the superiority of the
proposed method in terms of quality of the final solution,
convergence speed and robustness.

The rest of the paper is organized as follows. Section 2
describes the rudiments of fractional calculus and fractional-order
control systems. Section 3 provides a brief overview of the DE
family of algorithms and describes a recent state-of-the-art
version of DE called DE/rand/either–or, which was used, in this
specific task. Section 4 demonstrates how the DE can be applied to
the PIlDm controller design problem when formulated as an
optimization task. Simulation strategies and experimental results
have been presented and discussed in Section 5 and finally the
paper is concluded with a discussion on future research issues in
Section 6.
2. Fractional-order systems: a brief overview

Fractional calculus is a branch of mathematical analysis that
studies the possibility of taking real number power of the
differential operator and integration operator. From a purely
mathematical point of view, there are several ways to define
fractional-order derivatives and integrals. The generalized differ-
integrator operator may be put forward as

aDq
t f ðtÞ ¼

dqf ðtÞ

½dðt � aÞ�q
(1)

where q represents the real order of the differintegral (an n

is used in some literature to denote an integer order), t is the
parameter for which the differintegral is taken and a is
the lower limit. Unless otherwise stated, the lower limit will
be 0 and left out of the notation. Caputo used a popular definition
used to compute differintegral in 1960s. The definition for
Caputo’s fractional derivative of order l with respect to the
variable t and with the starting point t ¼ 0 goes as follows
(Caputo, 1967, 1969):

0Dl
t yðtÞ ¼

1

Gð1� dÞ

Z t

0

yðmþ1ÞðtÞdt
ðt � tÞd

ðg ¼ mþ d; m 2 Z; 0odp1Þ

(2)

where G(Z) is Euler’s gamma function. If go0, then we have a
fractional integral of order �g given as

0I�gt yðtÞ ¼ 0Dg
t yðtÞ ¼

1

Gð�gÞ

Z t

0

yðtÞdt
ðt � tÞ1þg

ðgo0Þ (3)

One distinct advantage of using Caputo’s definition is that it
only allows for consideration of easily interpretable initial
conditions but it is also bounded, which means the derivative of
a constant is equal to zero. In time domain, a fractional-order
system is governed by an n-term inhomogeneous fractional-order
differential equation (FDE):

anDbn yðtÞ þ an�1Dbn�1 yðtÞ þ � � � þ a1Db1 yðtÞ þ a0Db0 yðtÞ ¼ uðtÞ (4)

where Dl
� 0Dl

t is the Caputo’s fractional derivative of order l.
Converting to frequency domain, the fractional-order transfer
function of such a system may be obtained through the Laplace
transform function as follows:

GnðsÞ ¼
1

ansbn þ an�1sbn�1 þ � � � þ a1sb1 þ a0sb0
(5)

where bk (k ¼ 0, 1, y, n) is an arbitrary real number,
bn4bn�14?4b14b040 and ak (k ¼ 0, 1, y, n) is an arbitrary
constant. Finally, we would like to mention here that the Laplace
transform of the fractional derivative might be given asZ 1

0
e�stDgyðtÞdt ¼ sgYðsÞ �

Xm

k¼0

sg�k�1yðkÞðyÞ (6)

For go0 (i.e., for the case of a fractional integral) the sum in the
right-hand side must be omitted.
3. The DE algorithm and its modification

Like any other evolutionary algorithm, DE starts with a
population of NP D-dimensional parameter vectors representing
the candidate solutions. We shall denote subsequent generations
in DE by G ¼ 0, 1, y, Gmax. Since the parameter vectors are likely
to be changed over different generations, we may adopt the
following notation for representing the ith vector of the popula-
tion at the current generation as

~Xi;G ¼ ½x1;i;G; x2;i;G; x3;i;G; . . . ; xD;i;G� (7)

The initial population (at G ¼ 0) should better cover the entire
search space as much as possible by uniformly randomizing
individuals within the search space constrained by the prescribed
minimum and maximum bounds: ~Xmin ¼ fx1;min; x2;min; . . . ; xD;ming

and ~Xmax ¼ fx1;max; x2;max; . . . ; xD;maxg. Hence we may initialize the
jth component of the ith vector as

xj;i;0 ¼ xj;min þ randjð0;1Þðxj;max � xj;minÞ (8)

where randj(0,1) is the jth instantiation of a uniformly distributed
random number lying between 0 and 1. Following steps are taken
next: mutation, crossover and selection, which are explained
below.

3.1. Mutation

After initialization, DE creates a donor vector ~Vi;G correspond-
ing to each population member or target vector ~Xi;G in the current
generation through mutation. It is the method of creating this
donor vector, which differentiates between the various DE
schemes. For example, five most frequently referred mutation
strategies implemented in the public-domain DE codes available
online at http://www.icsi.berkeley.edu/�storn/code.html are
listed below:

‘‘DE=rand=1’’ : ~Vi;G ¼
~Xri

1
;G þ Fð~Xri

2
;G �

~Xri
3
;GÞ (9)

‘‘DE=best=1’’ : ~Vi;G ¼
~Xbest;G þ Fð~Xri

1
;G �

~Xri
2
;GÞ (10)

‘‘DE=target-to-best=1’’ : ~Vi;G ¼
~Xi;G

þ Fð~Xbest;G �
~Xi;GÞ

þ Fð~Xri
1
;G �

~Xri
2
;GÞ (11)

http://www.icsi.berkeley.edu/~storn/code.html
http://www.icsi.berkeley.edu/~storn/code.html


ARTICLE IN PRESS

A. Biswas et al. / Engineering Applications of Artificial Intelligence 22 (2009) 343–350 345
‘‘DE=best=2’’ : ~Vi;G ¼
~Xbest;G

þ Fð~Xri
1
;G �

~Xri
2
;GÞ þ Fð~Xri

3
;G �

~Xri
4
;GÞ (12)

‘‘DE=rand=2’’ : ~Vi;G ¼
~Xri

1
;G þ Fð~Xri

2
;G �

~Xri
3
;GÞ þ Fð~Xri

4
;G �

~Xri
5
;GÞ (13)

The indices ri
1; r

i
2; r

i
3; r

i
4 and ri

5 are mutually exclusive integers
randomly chosen from the range (Oldham and Spanier, 1974), NP,
which are also different from the index i. These indices are
randomly generated once for each mutant vector. The scaling
factor F is a positive control parameter for scaling the difference
vectors. ~Xbest;G is the best individual vector with the best fitness
function value in the population at generation G. The general
convention used for naming the various mutation strategies is
DE/x/y/z, where DE stands for differential evolution, x represents a
string denoting the vector to be perturbed and y is the number of
difference vectors considered for perturbation of x. z stands for the
type of crossover being used (exp: exponential; bin: binomial).
3.2. Crossover

To increase the potential diversity of the population, a cross-
over operation comes into play after generating the donor vector
through mutation. The classical DE family of algorithms generally
uses two kinds of crossover schemes—exponential and binomial

(Price et al., 2005). The donor vector exchanges its components
with the target vector ~Xi;G under this operation to form the trial

vector ~Ui;G ¼ ½u1;i;G;u2;i;G;u3;i;G; . . . ;uD;i;G�. Here we briefly discuss
the binomial crossover and the arithmetic crossover, which has
recently been introduced in the DE community in order to
circumvent the problem of rotational variance. The binomial
crossover is performed on each of the D variables whenever a
randomly picked number between 0 and 1 is less than or equal to
the Cr value. In this case, the number of parameters inherited from
the mutant has a (nearly) binomial distribution. The scheme may
be outlined as

uj;i;G ¼
vj;i;G if ðrandjð0;1ÞpCr or j ¼ jrand

xj;i;G otherwise

(
(14)

where randj(0,1)A[0,1] is the jth evaluation of a uniform random
number generator. jrand 2 ½1;2; . . . ;D� is a randomly chosen index,
which ensures that ~Ui;G gets at least one component from ~Vi;G.

The crossover scheme described in Eq. (14) is in spirit a
discrete recombination (Price et al., 2005). The discrete recombi-
nation is a rotationally variant operation. A rotation of the
coordinate systems moves the location of the potential trial
solutions. To overcome this limitation, a new trial vector
generation strategy ‘DE/current-to-rand/1’ is proposed in Price
(1999), which replaces the crossover operator prescribed in
Eq. (14) with the rotationally invariant arithmetic crossover
operator to generate the trial vector ~Ui;G by linearly combining
the target vector ~Xi;G and the corresponding donor vector ~Vi;G as
follows:

~Ui;G ¼
~Xi;G þ Kð~Vi;G �

~Xi;GÞ (15)

Now incorporating Eq. (9) in (15) we have

~Ui;G ¼
~Xi;G þ Kð~Xr1 ;G þ Fð~Xr2 ;G �

~Xr3 ;GÞ �
~Xi;GÞ

which further simplifies to

~Ui;G ¼
~Xi;G þ Kð~Xr1 ;G �

~Xi;GÞ þ F 0ð~Xr2 ;G �
~Xr3 ;GÞ (16)

where K is the combination coefficient, which has been proven
(Price, 1999) to be effective when it is chosen with a uniform
random distribution from [0, 1] and F 0 ¼ KF is a new constant
here.
3.3. Selection

To keep the population size constant over subsequent genera-
tions, the next step of the algorithm calls for selection

to determine whether the target or the trial vector survives to
the next generation, i.e., at G ¼ G+1. The selection operation may
be outlined as

~Xi;Gþ1 ¼

~Ui;G if f ð~Ui;GÞpf ð~Xi;GÞ

~Xi;G if f ð~Ui;GÞ4f ð~Xi;GÞ

8<
: (17)

where f ð~XÞ is the function to be minimized. So if the new trial
vector yields a lower value of the objective function, then it
replaces the corresponding target vector in the next generation;
otherwise, the target is retained in the population. Hence the
population either gets better (w.r.t. the minimization of the
objective function) or remains constant, but never deteriorates.
The complete pseudo-code has been provided below:

Pseudo-code for the DE algorithm family

Step 1: Set the generation number G ¼ 0, and randomly
initialize a population of NP individuals PG ¼ f

~X1;G; . . . ; ~XNP;Gg

with ~Xi;G ¼ ½x1;i;G; x2;i;G; x3;i;G; . . . ; xD;i;G� and each individual uni-
formly distributed in the range ½~Xmin; ~Xmax�,
where ~Xmin ¼ fx1;min; x2;min; . . . ; xD;ming and ~Xmax ¼ fx1;max;

x2;max; . . . ; xD;maxg with i ¼ ½1;2; . . . ;NP�.
Step 2: WHILE stopping criterion is not satisfied

DO
FOR i ¼ 1 to NP //do for each individual sequentially
Step 2.1: Mutation step

Generate a donor vector ~Vi;G ¼ fv
1
i;G; . . . ; v

D
i;Gg correspond-

ing to the ith target vector ~Xi;G via one of the different
mutation schemes of DE (Eqs. (9)–(13)).

Step 2.2: Crossover step

Generate a trial vector ~Ui;G ¼ fu
1
i;G; . . . ;u

D
i;Gg for the ith

target vector ~Xi;G through binomial crossover (Eq. (9)) or
exponential crossover (Eq. (14)) or through the arith-
metic crossover (Eq. (16)).

Step 2.3: Selection step

Evaluate the trial vector ~Ui;G

IF f ð~Ui;GÞpf ð~Xi;GÞ, THEN ~Xi;Gþ1 ¼
~Ui;G,

f ð~Xi;Gþ1Þ ¼ f ð~Ui;GÞIF f ð~Ui;GÞof ð~Xbest;GÞ,
THEN ~Xbest;G ¼

~Ui;G,
In the original DE mutation scheme, the difference vector
ð~XiðtÞ � ~XjðtÞÞ is scaled by a constant factor ‘F’. The usual choice for
this control parameter is a number between 0.4 and 1. We propose
to vary this scale factor in a random manner in the range (0.5, 1)
by using the relation

F ¼ 0:5ð1þ randð0;1ÞÞ (18)

where rand (0, 1) is a uniformly distributed random number
within the range [0, 1]. The mean value of the scale factor is 0.75.
This allows for stochastic variations in the amplification of the
difference vector and thus helps retain population diversity as the
search progresses. In Das et al. (2005), it has already been shown
that the DERANDSF (DE with Random Scale Factor) can meet or
beat the classical DE and also some versions of PSO in a
statistically significant manner. In addition to that, here we also
decrease the crossover rate CR linearly with time from CRmax ¼ 1.0
to CRmin ¼ 0.5. If CR ¼ 1.0, it means that all components of the
parent vector are replaced by the difference vector operator
according to (14). But at the later stages of the optimizing process,
if CR be decreased, more components of the parent vector are then
inherited by the offspring. Such a tuning of CR helps to explore the
search space exhaustively at the beginning, but adjust the



ARTICLE IN PRESS

A. Biswas et al. / Engineering Applications of Artificial Intelligence 22 (2009) 343–350346
movements of trial solutions finely during the later stages of
search, so that they can explore the interior of a relatively small
space in which the suspected global optimum lies. The time
variation of CR may be expressed in the form of the following
equation:

CR ¼ ðCRmax � CRminÞ
Gmax � G

Gmax

� �
þ CRmin (19)

where CRmax and CRmin are the maximum and minimum values of
crossover rate CR, G is the current generation number and Gmax is
the maximum number of allowable generations. After performing
a series of experiments we find that the DE/rand/1/bin scheme
(Eq. (9)) equipped with these modifications can outperform all
other classical DE variants for the controller design problem
investigated here. We exclude the detailed comparison results in
order to save space.
�

4. The DE-based design of fractional PIkDl controllers

4.1. The FOPID controller

A PID controller is a generic control loop feedback mechanism
widely used in industrial control systems. The PID controller
attempts to correct the error between a measured process variable
and a desired set point by calculating and then outputting a
corrective action that can adjust the process accordingly. An
integer-order PID controller has the following transfer function:

GcðsÞ ¼ Kp þ Kis
�1 þ Kds (20)

The PID controller calculation (algorithm) involves three
separate parameters: the proportional (Kp), the integral (Ki) and
derivative (Kd) time constants. The proportional gain determines
the reaction to the current error, the integral determines the
reaction based on the sum of recent errors and the derivative
determines the reaction to the rate at which the error has been
changing. The weighted sum of these three actions is used to
adjust the process via a control element such as the position of a
control valve or the power supply of a heating element. The block
diagram of a generic closed-loop control system involving the PID
controller has been shown in Fig. 1.

The real objects or processes that we want to control are
generally fractional (for example, the voltage–current relation of a
semi-infinite lossy RC line). However, for many of them the
fractionality is very low. In general, the integer-order approxima-
tion of the fractional systems can cause significant differences
between mathematical model and real system. The main reason
for using integer-order models was the absence of solution
methods for FDEs. PID controllers belong to dominating industrial
controllers and therefore are objects of steady effort for improve-
ments of their quality and robustness. One of the possibilities to
Fig. 1. A generic closed-loop process-control system with PID controller.
improve PID controllers is to use fractional-order controllers with
non-integer derivation and integration parts.

Following the works of Podlubny (1999b), we may go for a
generalization of the PID controller, which can be called the PIlDm

controller because of involving an integrator of order l and a
differentiator of order m. The continuous transfer function of such
a controller has the form

GcðsÞ ¼ Kp þ Tis
�l þ Tdsm ðl;m40Þ (21)

The output response of the PIlDm controller in time domain may
be given as

uðtÞ ¼ KpeðtÞ þ KiD
�leðtÞ þ KdDmeðtÞ (22)

where l ¼ +1, m ¼ +1 implies normal PID controller, for l ¼ 0,
m ¼ +1, we get a normal PD controller, l ¼ +1, m ¼ 0 implies
normal PI controller and l ¼ 0, m ¼ 0 implies a proportional gain.
All these classical types of PID controllers are the special cases of
the fractional PIlDm controller. As can be perceived from Fig. 2, the
FOPID controller generalizes the integer-order PID controller and
expands it from point to plane. This expansion adds more
flexibility to controller design and we can control our real-world
processes more accurately.

4.2. Formulation of the objective function

The design approach presented here is based on the root locus
method (dominant roots method) of synthesizing integral PID
controllers (Astrom and Hagglund, 1995). As in the traditional root
locus method, based on the user specifications of peak overshoot
Mp and rise time trise (or requirements of stability and damping
levels), we find out the damping ratio x and the un-damped
natural frequency o0 of the closed-loop system to be designed.
Then dominant poles will be

p1;2 ¼ �xo0 � jo0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
¼ �x� jy ðsayÞ (23)

Let the closed-loop transfer function be

CðsÞ

RðsÞ
¼

GðsÞ

1þ GðsÞHðsÞ
(24)

where the transfer function of the process to be controlled is Gp(s)
and that of the controller is Gc(s) ¼ U(s)/E(s) and G(s) ¼ Gc(s)Gp(s).
We assume unity feedback gain, i.e., H(s) ¼ 1. From Eq. (24) the
(0, 1)
PI

(0, 0)
P

(1, 1)
PID

(1, 0)
PD �

Fig. 2. Generalization of the FOPID controller: from point to plane.



ARTICLE IN PRESS

A. Biswas et al. / Engineering Applications of Artificial Intelligence 22 (2009) 343–350 347
characteristics equation of the closed-loop system is

1þ GðsÞHðsÞ ¼ 0) 1þ GpðsÞGcðsÞ � 1 ¼ 0 (25)

Now the dominant poles of the system are the zeros of this
characteristics equation, so they will obviously satisfy the
equation. Thus from (25) we get

1þ ½Kp þ Kið�xþ jyÞ�l þ Kdð�xþ jyÞm�Gpð�xþ jyÞ ¼ 0 (26)

This equation has total five unknowns, Kp, Ki, Kd, l and m. Let R

be the real part of the complex expression (26), I the imaginary
part of the complex expression (26) and c the phase an-
gle ¼ tan�1(I/R).

Now we define the following objective function:

JðKp;Ki;Kd; l;mÞ ¼ jIj2 þ jRj2 þ c
�� ��2 (27)

Our goal is to find out an optimal solution set {Kp, Ki, Kd, l, m} for
which J ¼ 0. Here the above function has been minimized with
modified DE/rand/1/bin algorithm.

4.3. Vector representation in DE

The solution space of Eq. (27) is five-dimensional, the five
dimensions being {Kp, Ki, Kd, l, m}. So each parameter vector in DE
has five components, i.e., the jth population member at Gth
generation may be given as

~Xj;G ¼ ðKp;Ki;Kd;l;mÞT (28)

From the practical consideration of the PID controller design
(Astrom and Hagglund, 1995), we fixed the following numerical
ranges for each parameter:

1pKpp1000

0pl; dp1

1pTi; Tdp500 (29)

5. Experimental results

5.1. Problem instances

We have tested the proposed method on three specific
instances of the design problem. All the design examples follow
the basic framework detailed in Section 4. The first problem
involves the speed control of a DC motor. First, the uncompen-
sated motor can only rotate at 0.1 rad/s with an input voltage of
1 V (this was obtained when the open-loop response is simulated).
Since the most basic requirement of a motor is that it should
rotate at the desired speed, the steady-state error of the motor
speed should be less than 1%. The other performance requirement
is that the motor must accelerate to its steady-state speed as soon
Table 1
Description of the problem instances considered

Problem number Process plant transfer function Gp(s)

I k

ðJsþ bÞðLsþ RÞ þ k2
, J ¼ 0.01, b ¼ 0.1, k ¼ 0.01, R ¼ 1, L ¼ 0.5

II s2

50sþ 400
III 1

0:8s2:2 þ 0:5s0:9 þ 1
IV 1

0:9s0:3 þ 0:6s0:8 þ 1
(hypothetical plant)
as it turns on. In this case, we want it to have a settling time of 2 s.
Since a speed faster than the reference may damage the
equipment, we want to have an overshoot of less than 5%. The
second problem also involves a second-order (integer) plant,
which is to be controlled for obtaining a peak overshoot MP ¼ 30%
and rise time trise ¼ 0.3 s in the closed-loop response.

The third and fourth problem instances involve fractional-
order plants. The third one is taken from Podlubny’s seminal
paper on fractional controllers (Podlubny, 1999b). In some cases a
real system is better described by such FDEs (Podlubny, 1999a)
and from this consideration, it is important to investigate the
controlling mechanism of such systems through FOPID-type
controllers. Table 1 summarizes all the test problems along with
the corresponding user specifications.

5.2. Digital realization of the FOPID controller

For a fractional-order differentiator/integrator sr, where r is a
real number, its discretization is a key step in digital implementa-
tion. Furthermore for control applications, the obtained approx-
imate discrete time rational transfer function should be stable and
of minimum phase. Continuous fraction expansion (CFE) by Tustin
rule enjoys all those desirable properties. By using this method,
the discrete transfer function approximating fractional-order
operators can be expressed as

D�r
ðzÞ ¼ ðwðz�1ÞÞ

�r
¼

2

T

� ��r

CFE
1� z�1

1þ z�1

� ��r
 !

p;q

¼
2

T

� ��r Ppðz�1Þ

Qqðz�1Þ
(30)

where T is the sampling period and Pp and Qq are polynomials of
degree p and q, respectively, in the variable z�1. The general
expression for numerator Pp(z�1) and denominator Qqðz

�1Þ of
D�r
ðzÞ is given below for p ¼ q ¼ 1,3,5.
In this work we have used the Tustin-rule-based CFE where the

sampling time is T ¼ 0.001 s and the order of the approximate
model is 5 (Table 2).

5.3. Competitor algorithms and parametric set-up

The proposed design method has been extensively compared
with two state-of-the-art design methods for FOPID controllers
based on the binary GA (Holland, 1975; Cao et al., 2005) and a
recently proposed extension of the canonical PSO namely self-
organizing HPSO-TVAC (Ratnaweera and Halgamuge, 2004). The
GA-based scheme was proposed by Cao et al. (2005) and uses a
50-bit binary string to encode five parameters of the FOPID
controller. The fitness functions in Cao’s method employ the
integral of the squared error and absolute error signal value and
Users specification

Maximum overshoot (%) Rise time (s) Steady-state error (%)

5 0.5 4

20 0.1 Not specified

10 0.2 3

5 0.3 3



ARTICLE IN PRESS

Table 2
Expressions for numerator and denominator polynomials in the CFE

p ¼ q Pp(Z�1) (k ¼ 1) and Qq(Z�1) (k ¼ 0)

1 ð�1Þkz�1r þ 1

3 ð�1Þkðr3 � 4rÞz�3 þ ð6r2 � 9Þz�2 þ ð�1Þk15z�1r þ 15

5 ð�1Þkðr5 � 20r3 þ 64rÞz�5 þ ð�195r2 þ 15r4 þ 225Þz�4

þ ð�1Þkð105r3 � 735rÞz�3 þ ð420r2 � 1050Þz�2 þ ð�1Þk945z�1r þ 945

Table 3
Parameter settings for the different algorithms

HPSO-TVAC Modified DE

Parameter Value Parameter

Pop_size 40 Pop_size

Inertia weight 0.794 CRmax

C1 Linearly varying 0.35-2.4 CRmin

C2 Linearly varying 2.4-0.35 Scale factor F

Vmax 3.00

Re-initialization

velocity

Linearly decaying from Vmax to

0.1Vmax

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Uncontrolled Response
FOPID Using MOdified DE
Integer PID controller
FOPID Using HPSO-TVAC
FOPID Using Binary GA

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Uncontrolled Response
FOPID Using Modified DE
Integer PID controller
FOPID Using HPSO-TVAC
FOPID Using Binary GA

Fig. 3. Unit step response of the closed-loop systems for the test problems: (a) Design Pr

Problem III (fractional-order plant), (d) Design Problem IV (fractional-order plant).

A. Biswas et al. / Engineering Applications of Artificial Intelligence 22 (2009) 343–350348
are typically borrowed from the realm of optimal control (Stengel,
1994). The HPSO-TVAC algorithm on the other hand uses the same
particle representation scheme as well as objective function as
that used for the modified DE. Table 3 shows the parametric set-
up for these algorithms. We choose the standard set of
parameters, equipped with which the algorithms have been
shown to be at the peak of their performance (over benchmark
functions) in the existing literature (Ratnaweera and Halgamuge,
2004; Cao et al., 2005; Das et al., 2005). No hand tuning of
parameters has been allowed in any case to make the comparison
fair enough.
Binary GA (Vesterstrøm and Thomson, 2004)

Value Parameter Value

10D Initial Pop_size 50

1.0 No. of bits per gene 50

0.5 Mutation probability 0.01

Uniformly distributed

random number

between 0.5 and 1.0

with mean value 0.75

Uniform crossover

probability

0.6

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Uncontrolled Response
FOPID Using Modified DE
Integer PID controller
FOPID Using HPSO-TVAC
FOPID Using Binary GA

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Uncontrolled Response
FOPID Using Modified DE
Integer PID Controller
FOPID Using HPSO-TVAC
FOPID Using Binary GA

oblem I (integer-order plant), (b) Design Problem II (integer-order plant), (c) Design



ARTICLE IN PRESS

A. Biswas et al. / Engineering Applications of Artificial Intelligence 22 (2009) 343–350 349
5.4. Simulation strategy

We run three population-based optimization algorithms
namely HPSO-TVAC, a modified DE and the binary encoded GA
suggested in Holland (1975) and Cao et al. (2005) over four design
problems according to the user specifications summarized in
Table 1. All the algorithms have been developed from scratch in
Table 4
The FOPID controller transfer functions as found with modified DE for four test

problems

Process plant transfer function Gp(s) Controller transfer function Gc(s)

k

ðJsþ bÞðLsþ RÞ þ k2
, J ¼ 0.01, b ¼ 0.1,

k ¼ 0.01, R ¼ 1, L ¼ 0.5

36:762þ 221:852s�0:668 þ 40:719s0:824

s2

50sþ 400

0:349þ 19:287s�0:949 þ 1:009s0:322

1

0:8s2:2 þ 0:5s0:9 þ 1
21:22þ 1:37s�0:92 þ 12:05s0:93

1

0:9s0:3 þ 0:6s0:8 þ 1
(Hypothetical plant)

1:72þ 41:524s�0:668 þ 1:59s0:824

Table 5
Summary of the performance of closed-loop system under different PID controllers aga

Process

plant

Different controllers used Unit step response obtained

Maximum overshoot

(%)7standard

deviation (%)

I Fractional controller using DE 3.117(0.31)

Integer PID controller using DE 4.237(0.34)

Fractional controller using PSO 3.917(0.41)

Fractional controller using GA 6.317(0.87)

II Fractional controller using DE 18.157(0.77)

Integer PID controller using DE 6.117(0.45)

Fractional controller using PSO 267(0.95)

Fractional controller using GA 327(1.02)

III Fractional controller using DE 7.697(0.23)

Integer PID controller using DE 6.127(0.39)

Fractional controller using PSO 5.787(0.45)

Fractional controller using GA 8.297(0.89)

IV Fractional controller using DE 1.937(0.089)

Integer PID controller using DE 0.217(0.011)

Fractional controller using PSO 0.127(0.012)

Fractional controller using GA 0.277(0.017)

0 1 2 3 4 5 6 7 8 9 10
10-6

10-4

10-2

100

102

104

No of FEs

Improved DE
HPSO-TVAC
Binary GA

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e 

(in
 lo

g 
sc

al
e)

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e 

(in
 lo

g 
sc

al
e)

x 104

Fig. 4. Convergence characteristics for an integer and a fra
Visual C++ platform on a Pentium IV, 2.2 GHz PC, with 512 KB
cache and 2 GB of main memory in Windows Server 2003
environment. The graphs and figures have been obtained using
MATLAB 6.5. Twenty-five independent runs (with different seeds
for the random number generator) were carried out for each of the
algorithms and each run was continued up to 105 function
evaluations (FEs). In case of DE since D ¼ 5, NP ¼ 50 and this
approximately corresponds to a Gmax ¼ 2000 for 105 FEs. In what
follows, we report the results for the median run of each
algorithm (when the runs for a single algorithm have been ranked
according to their final accuracy).
5.5. Results

Fig. 3 shows the dynamic response characteristics of the
closed-loop systems for design problems I–IV as specified in
Table 1. The integer-order PID controller as marked in Fig. 3 was
obtained by minimizing the same objective function (in Eq. (27))
in three dimensions, taking l ¼ m ¼ 1. Table 4 provides the FOPID
controller transfer functions for four test problems as found with
inst the unit step

Final objective function

values obtained
Rise time (s)7standard

deviation (s)

Steady-state error

(%)7standard

deviation (%)

0.3957(0.051) 3.57(0.010) 0.007(0.0000)

0.1017(0.007) 0.17(0.001) 0.007(0.0000)

0.8227(0.091) 1.97(0.021) 0.00017(0.0000)

0.6957(0.088) 2.17(0.056) 0.03127(0.0025)

0.07277(0.001) 07(0.000) 0.007(0.0000)

0.006677(0.001) 0.17(0.001) 0.007(0.0000)

0.1257(0.009) 1.07(0.012) 0.00017(0.0000)

0.1387(0.011) 1.37(0.034) 0.06327(0.0041)

0.0237(0.001) 0.97(0.023) 0.007(0.0000)

0.6517(0.034) 0.47(0.021) 0.007(0.0000)

0.6467(0.056) 1.17(0.071) 0.00017(0.0000)

0.6257(0.077) 1.37(0.081) 0.07117(0.0021)

0.2187(0.015) 1.67(0.034) 0.007(0.0000)

0.4357(0.078) 0.27(0.010) 0.007(0.0000)

0.9827(0.101) 0.17(0.009) 0.00017(0.0000)

1.3127(0.313) 0.37(0.013) 0.05227(0.0037)

Improved DE
HPSO-TVAC
Binary GA

0 1 2 3 4 5 6 7 8 9 10
No of FEs

10-6

10-4

10-2

100

102

104

x 104

ctional plant: (a) Integer plant I, (b) Fractional plant I.



ARTICLE IN PRESS

A. Biswas et al. / Engineering Applications of Artificial Intelligence 22 (2009) 343–350350
modified DE. Table 5 reports the maximum overshoot (in %), rise
time (in s) and steady-state error (in %) for the unit step response
of each closed-loop system under the competitor PID controllers
considered here. All entries in this table are the mean of the 25
independent runs of the modified DE, the HPSO-TVAC and the
binary GA algorithm and come with the respective standard
deviations as well. Convergence characteristics, i.e., how the
objective function value decreases with the number of FEs, are
shown in Fig. 4 for one integer-order plant and one fractional-
order plant. The graphs indicate that the DE-based method could
find better solutions consuming lesser amount of computational
time.

It is noted that for the given common performance criteria on
peak overshoot MP, rise time trise (s), and steady-state error es, the
fractional-order controller achieves better results than its integer
counterpart in general for the fractional-order plants III and IV.
The DE-based FOPID controller provides results closest to the
three user specifications as listed in Table 1 in each case.
6. Discussion and conclusions

An intelligent optimization method for designing FOPID
controllers based on the DE is presented in this paper. Fractional
calculus can provide novel and higher performance extension for
FOPID controllers. However, the difficulties of designing FOPID
controllers increase, because FOPID controllers also take into
account the derivative order and integral order in comparison
with traditional PID controllers. To design the parameters of the
FOPID controllers efficiently, the DE/rand/1/bin algorithm is
modified with respect to its scale factor F and crossover rate CR.
The proposed method has been shown to outperform a state-of-
the-art version of the PSO algorithm and a binary GA-based
method especially for the fractional-order plants. The proposed
scheme of fractional PID controller design will thus find extensive
commercial application in the next-generation controller design.

References

Astrom, K., Hagglund, T., 1995. PID Controllers; Theory, Design and Tuning.
Instrument Society of America, Research Triangle Park.

Cao, J., Liang, J., Cao, B., 2005. Optimization of fractional order PID controllers based
on genetic algorithms. In: Proceedings of the International Conference on
Machine Learning and Cybernetics, Guangzhou, 18–21 August.
Caputo, M., 1967. Linear model of dissipation whose Q is almost frequency
independent—II. Geophysical Journal of the Royal Astronomical Society 13,
529–539.

Caputo, M., 1969. Elasticita e Dissipacione. Zanichelli, Bologna.
Chengbin, Ma., Hori, Y., 2004. The application of fractional order PID controller for

robust two-inertia speed control. In: Proceedings of the 4th International
Power Electronics and Motion Control Conference, Xi’an, August.

Chen, Y.Q., Xue, D., Dou, H., 2004. Fractional calculus and biomimetic control. In:
Proceedings of the First IEEE International Conference on Robotics and
Biomimetics (RoBio04), Shengyang, China, August. IEEE.

Chen, Y.Q., Ahn, H., Xue, D., 2005. Robust controllability of interval fractional order
linear time invariant systems. In: Proceedings of the ASME 2005 International
Design Engineering Technical Conferences & Computers and Information in
Engineering Conference, Paper # DETC2005-84744, Long Beach, CA, September
24–28, pp. 1–9.

Das, S., Konar, A., Chakraborty, U.K., 2005. Two improved differential evolution
schemes for faster global search. In: ACM-SIGEVO Proceedings of GECCO,
Washington, DC, June, pp. 991–998.

Dorcak, L., Petras, I., Kostial, I., Terpak, J., 2001. State-space controller design for the
fractional-order regulated system. In: Proceedings of the ICCC’2001, Krynica,
pp. 15–20.

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Harbor.

Lubich, C.H., 1986. Discretized fractional calculus. SIAM Journal on Mathematical
Analysis 17 (3), 704–719.

Miller, K.S., Ross, B., 1993. An Introduction to the Fractional Calculus and Fractional
Differential Equations. Wiley, New York.

Nakagawa, M., Sorimachi, K., 1992. Basic characteristics of a fractance device. IEICE
Transactions on Fundamentals E75-A (12), 1814–1819.

Oldham, K.B., Spanier, J., 1974. The Fractional Calculus. Academic Press, New York.
Oustaloup, A., 1981. Fractional order sinusoidal oscillators: optimization and their

use in highly linear FM modulators. IEEE Transactions on Circuits and Systems
28 (10), 1007–1009.

Petras, I., 1999. The fractional order controllers: methods for their synthesis and
application. Journal of Electrical Engineering 50 (9–10), 284–288.

Podlubny, I., 1999a. Fractional Differential Equations. Academic Press, San Diego,
Boston, New York, London, Tokyo, Toronto, p. 368.

Podlubny, I., 1999b. Fractional-order systems and PIlDm controllers. IEEE Transac-
tions on Automatic Control 44 (1), 208–213.

Price, K., 1999. An introduction to differential evolution. In: Corne, D., Dorigo, M.,
Glover, V. (Eds.), New Ideas in Optimization. McGraw-Hill, UK,
pp. 79–108.

Price, K., Storn, R., Lampinen, J., 2005. Differential Evolution—A Practical Approach
to Global Optimization. Springer, New York.

Ratnaweera, A., Halgamuge, K.S., 2004. Self organizing hierarchical particle swarm
optimizer with time-varying acceleration coefficients. IEEE Transactions on
Evolutionary Computation 8 (3), 240–254.

Stengel, R.F., 1994. Optimal Control and Estimation. Dover Publications, New York.
Storn, R., Price, K., 1997. Differential evolution—a simple and efficient heuristic for

global optimization over continuous spaces. Journal of Global Optimization 11
(4), 341–359.

Vesterstrøm, J., Thomson, R., 2004. A comparative study of differential evolution,
particle swarm optimization, and evolutionary algorithms on numerical
benchmark problems. In: Proceedings of the Sixth Congress on Evolutionary
Computation (CEC-2004). IEEE Press, New York, July 6–9.

Vinagre, B.M., Podlubny, I., Dorcak, L., Feliu, V., 2000. On fractional PID controllers:
a frequency domain approach. In: Proceedings of IFAC Workshop on Digital
Control-PID’00, Terrassa, Spain.


	Design of fractional-order PIlambdaDmu controllers with an improved differential evolution
	Introduction
	Fractional-order systems: a brief overview
	The DE algorithm and its modification
	Mutation
	Crossover
	Selection

	The DE-based design of fractional PIlambdaDmu controllers
	The FOPID controller
	Formulation of the objective function
	Vector representation in DE

	Experimental results
	Problem instances
	Digital realization of the FOPID controller
	Competitor algorithms and parametric set-up
	Simulation strategy
	Results

	Discussion and conclusions
	References


