
Fundamenta Informaticae 95 (2009) 1–26 1

DOI 10.3233/FI-2009-181

IOS Press

An Improved Harmony Search Algorithm with Differential Mutation
Operator

Prithwish Chakraborty, Gourab Ghosh Roy, Swagatam Das, Dhaval Jain
Department of Electronics and Telecommunication Engineering

Jadavpur University, Kolkata, India

Ajith Abraham
Machine Intelligence Research Labs (MIR Labs)

Scientific Network for Innovation and Research Excellence

P.O. Box 2259 Auburn, Washington 98071-2259, USA

ajith.abraham@ieee.org

Abstract. Harmony Search (HS) is a recently developed stochastic algorithm which imitates the
music improvisation process. In this process, the musicians improvise their instrument pitches
searching for the perfect state of harmony. Practical experiences, however, suggest that the algo-
rithm suffers from the problems of slow and/or premature convergence over multimodal and rough
fitness landscapes. This paper presents an attempt to improve the search performance of HS by
hybridizing it with Differential Evolution (DE) algorithm. The performance of the resulting hybrid
algorithm has been compared with classical HS, the global best HS, and a very popular variant of
DE over a test-suite of six well known benchmark functions and one interesting practical optimiza-
tion problem. The comparison is based on the following performance indices - (i) accuracy of final
result, (ii) computational speed, and (iii) frequency of hitting the optima.

Keywords: Global optimization, Meta-heuristics, Harmony Search, Differential Evolution, Explo-
rative power, Population variance

Address for correspondence: Machine Intelligence Research Labs (MIR Labs), Scientific Network for Innovation and Research
Excellence, P.O. Box 2259 Auburn, Washington 98071-2259, USA.

2 P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator

1. Introduction

The computational drawbacks of existing derivative-based numerical methods have forced the researchers
all over the world to rely on meta-heuristic algorithms founded on simulations to solve engineering op-
timization problems. A common factor shared by the meta-heuristics is that they combine rules and
randomness to imitate some natural phenomena. Last few decades have seen an incredible growth in
the field of nature-inspired meta-heuristics. Two families of algorithms that primarily constitute this
field today are the Evolutionary Algorithms (EAs) [1, 2, 3] and the Swarm Intelligence (SI) algorithms
[4, 5, 6].

In recent past, the computational cost having been reduced almost dramatically, researchers all over
the world are coming up with new EAs on a regular basis to meet the demands of the complex, real-world
optimization problems. Following this tradition, in 2001, Geem et al. proposed Harmony Search (HS) [7,
8, 9], a derivative-free, meta-heuristic algorithm, mimicking the improvisation process of music players.
Since its inception, HS has been successfully applied to a wide variety of practical optimization problems
like pipe-network design [10], structural optimization [11], vehicle routing problem [12], combined heat
and power economic dispatch problem [13], and scheduling of multiple dam system [14]. HS may be
viewed as a simple real-coded GA, since it incorporates many important features of GA like mutation,
recombination, and selection.

The performance of classical HS over numerical benchmark functions like those used in [15] suffers
from stagnation and/or false convergence. Mahdavi et al. proposed an improved HS algorithm (IHS) [15]
that employs a novel method generating new solution vectors with enhanced accuracy and convergence
speed. Recently, Omran and Mahdavi tried to improve the performance of HS by incorporating some
techniques from swarm intelligence [5]. The new variant called by them as GHS (Global best Harmony
Search) [16] reportedly outperformed three other HS variant over the benchmark problems. Fesanghary
et al. [17] tried to improve the local search behavior of HS by hybridizing it with Sequential Quadratic
Program (SQP) [18]. In the pitch adjustment phase of classical HS each vector is probabilistically per-
turbed in random step size of fixed maximum amplitude. This step is quite similar to the mutation process
employed for perturbing the search agents in Evolutionary Strategy (ES) [19].

This article proposes a new strategy for changing, for perturbing each vector with a differential mu-
tation operator borrowed from the realm of Differential Evolution (DE) [20, 21, 22]. The new mutation
strategy is inspired by Zaharie’s seminal work [23], where the author theoretically showed that the dif-
ferential mutation scheme has greater explorative power than the ES type mutation schemes. The new
algorithm, called DHS (Differential Harmony Search), has been extensively compared with classical HS,
GHS, and IHS.

The rest of the paper is organized in the following way; Section 2 briefly outlines the classical HS,
Section 3 introduces the hybrid GHS algorithm in sufficient details, the experimental and numerical
results have been presented and discussed in Section 4 and finally the paper is concluded in Section 6.

2. The Harmony Search Metaheuristic Algorithm

Most of the existing meta-heuristic algorithms imitate natural, scientific phenomena, e.g. physical an-
nealing of metal plates in simulated annealing, evolution in evolutionary algorithms and human memory
in tabu search. Following similar trend, a new meta-heuristic algorithm can be conceptualized from the

P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator 3

Figure 1. Analogy between music improvisation and engineering optimization (figure adopted from [8])

music improvisation process where musicians improvise their instruments’ pitches searching for a per-
fect state of harmony. Although the estimation of a harmony is aesthetic and subjective, on the other
hand, there are several theorists who have provided the standard of harmony estimation: Greek philoso-
pher and mathematician Pythagoras (582 – 497BC) worked out the frequency ratios (or string length
ratios with equal tension) and found that they had a particular mathematical relationship, after research-
ing what notes sounded pleasant together. The octave was found to be a 1:2 ratio and what we today call
a fifth to be a 2:3 ratio; French composer Leonin (1135 – 1201) is the first known significant composer
of polyphonic “organum” which involved a simple doubling of the chant at an interval of a fifth or fourth
above or below; and French composer Jean-Philippe Rameau (1683 – 1764) established the classical
harmony theories in the book “Treatise on Harmony”, which still form the basis of the modern study of
tonal harmony [24].

In engineering optimization, the estimation of a solution is carried out by putting values of deci-
sion variables to objective function or fitness function and evaluating the function value with respect to
several aspects such as cost, efficiency, and/or error. Just like music improvisation seeks a best state
(fantastic harmony) determined by an aesthetic standard, optimization process seeks a best state (global
optimum) determined by objective function evaluation; the pitch of each musical instrument determines
the aesthetic quality, just as the objective function value is determined by the set of values assigned to
each decision variable; aesthetic sound quality can be improved practice after practice, objective function
value can be improved iteration by iteration. The HS meta-heuristic algorithm was derived based on nat-
ural musical performance processes that occur when a musician searches for a perfect state of harmony,
such as during jazz improvisation.

The analogy between music improvisation and engineering optimization is illustrated in Figure 1.
Each music player (saxophonist, double bassist, and guitarist) can correspond to each decision variable
(x1, x2, x3) and the range of each music instrument (saxophone = {Do, Re, Mi}; double bass = {Mi, Fa,
Sol}; and guitar = {Sol, La, Si}) corresponds to the range of each variable value (x1 = {100, 200, 300};
x2 = {300, 400, 500}; and x3 = {500, 600, 700}). If the saxophonist toots the note Re, the double
bassist plucks Mi, and the guitarist plucks Si, their notes together make a new harmony (Re, Mi, Si). If
this new harmony is better than existing harmony, the new one is kept. Likewise, the new solution vector
(200mm, 300mm, 700mm) is kept if it is better than existing harmony in terms of objective function
value. The harmony quality is improved by practice after practice.

Similarly in engineering optimization, each decision variable initially chooses any value within the
possible range, together making one solution vector. If all the values of decision variables make a good
solution, that experience is stored in each variable’s memory and the possibility to make a good solution

4 P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator

is also increased next time. When a musician improvises one pitch, he (or she) has to follow any one of
three rules:

1. playing any one pitch from his (or her) memory,

2. playing an adjacent pitch of one pitch from his (or her) memory, and

3. playing totally random pitch from the possible range of pitches.

Similarly, when each decision variable chooses one value in the HS algorithm, it follows any one of three
rules:

1. choosing any one value from the HS memory (defined as memory considerations),

2. choosing an adjacent value of one value from the HS memory (defined as pitch adjustments) and

3. choosing totally random value from the possible range of values (defined as randomization).

According to the above concept, the HS meta-heuristic algorithm consists of the following five steps
[7, 8]:

Step 1 : Initialization of the optimization problem and algorithm parameters.

Step 2 : Harmony memory initialization.

Step 3 : New Harmony improvisation.

Step 4 : Harmony memory update.

Step 5 : Repetition of Steps 3 and 4 until the termination criterion is satisfied.

Note that in what follows we shall denote vectors in bold.

Step 1. Initialization of the optimization problem and algorithm parameters:

In the first step, the optimization problem is specified as follows:

Minimize (or Maximize) f(~x) (1)

subjected to xi ∈ Xi, i = 1, 2, . . . , N .
Where f(·)is a scalar objective function to be optimized; ~x is a solution vector composed of decision

variables xi; Xi is the set of possible range of values for each decision variable xi (continuous decision
variable), that is Lxi ≤ Xi ≤ Uxi, where Lxi and Uxi are the lower and upper bounds for each decision
variable respectively, and N is the number of decision variables. In addition, the control parameters
of HS are also specified in this step. These parameters are the Harmony Memory Size (HMS) i.e. the
number of solution vectors (population members) in the harmony memory (in each generation); Harmony
Memory Considering Rate (HMCR); Pitch Adjusting Rate (PAR); and the Number of Improvisations
(NI) or stopping criterion.

P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator 5

Step 2. Harmony memory initialization:

In the 2nd step each component of each vector in the parental population (Harmony Memory), which is
of size HMS, is initialized with a uniformly distributed random number between the upper and lower
bounds [Lxi, Uxi], where 1 ≤ i ≤ N . This is done for the i-th component of the j-th solution vector
using the following equation:

xji = Lxi + rand(0, 1) · (Uxi − Lxi) (2)

where j = 1, 2, 3, . . . ,HMS and rand(0, 1) is a uniformly distributed random number between 0 and
1 and it is instantiated a new for each component of each vector.

Step 3. New Harmony improvisation:

In this step, a new harmony vector ~x′ = (x′1, x
′
2, x
′
3, x
′
4, . . . , x

′
N) is generated based on three rules:

(1) memory consideration, (2) pitch adjustment, and (3) random selection. Generating a new harmony
is called ‘improvisation’. In the memory consideration, the value of the first decision variable x′1 for
the new vector is chosen from any of the values already existing in the current HM i.e. from the
set{x1

1, . . . , x
HMS
1 }, with a probabilityHMCR. Values of the other decision variables x′2, x

′
3, x
′
4, . . . , x

′
N

are also chosen in the same manner. The HMCR, which varies between 0 and 1, is the rate of choos-
ing one value from the previous values stored in the HM , while (1 −HMCR)is the rate of randomly
selecting a fresh value from the possible range of values.

x′i ←

{
xi ∈ {x1

i , x
2
i , x

3
i , . . . , x

HMS
i } with probability HMCR

xi ∈ Xi with probability (1−HMCR).
(3)

For example, an HMCR = 0.80 indicates that the HS algorithm will choose the decision variable
value from historically stored values in theHM with an 80% probability or from the entire possible range
with a 20% probability. Every component obtained by the memory consideration is further examined to
determine whether it should be pitch-adjusted. This operation uses the parameter PAR (which is the
rate of pitch adjustment) as follows:

Pitch Adjusting Decision for

x′i =

{
x′i ± rand(0, 1) · bw with probability PAR,
x′i with probability (1− PAR),

(4)

where bw is an arbitrary distance bandwidth (a scalar number) and rand() is a uniformly distributed
random number between 0 and 1. Evidently step 3 is responsible for generating new potential variation
in the algorithm and is comparable to mutation in standard EAs. Thus either the decision variable is
perturbed with a random number between 0 and bw or otherwise it is left unaltered with a probability
PAR or else it is left unchanged with probability (1− PAR).

Step 4. Harmony memory update:

If the new harmony vector ~x′ = (x′1, x
′
2, x
′
3, x
′
4, . . . , x

′
N) is better than the worst harmony in the HM,

judged in terms of the objective function value, the new harmony is included in the HM and the existing

6 P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator

Figure 2. Flow-chart of the classical HS algorithm

worst harmony is excluded from the HM. This is actually the selection step of the algorithm where
the objective function value is evaluated to determine if the new variation should be included in the
population (Harmony Memory).

Step 5. Check stopping criterion:

If the stopping criterion (maximum number of improvisations) is satisfied, computation is terminated.
Otherwise, steps 3 and 4 are repeated. The whole optimization process is represented with a flow-chart
in Figure 2.

3. The Differential Harmony Search (DHS) Algorithm

Experiments with the classical HS meta-heuristics over the standard numerical benchmarks suggest that
the algorithm does suffer from the problem of premature and/or false convergence, slow convergence
especially over multimodal fitness landscape. Also the performance of the classical HS algorithm de-
teriorates with the growth of search space dimensionality. To circumvent this problems, in the present
work we replace the pitch adjustment operation in classical HS with a mutation strategy borrowed from
the realm of the DE algorithms. After experimenting with the members of the classical DE family of
Storn and Price, we find that the mutation strategy employed by DE/rand/1 [22] produces best result
when hybridized with classical HS. Following the perturbation process of DE/rand/1/bin, we mutate the
target vector with the difference of two randomly selected population members. The process has been
presented in equation (5).

~x′i = ~x′i + F (~xr1 − ~xr2) , (5)

P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator 7

Figure 3. Flow-chart of DHS

where F is a scalar number called the scale factor. In our case the scale factor F is chosen to be a
uniformly distributed random number between 0 and 1 as that gives better performance with the HS
algorithm. From now onwards this modified HS equipped with a DE type mutation will be referred to
as Differential Harmony Search (DHS). In what follows we undertake a simple mathematical analysis
which shows that the DHS, under certain conditions, posses an increasing population variance (with
generation) as compared to its classical counterpart. This ensures that the explorative power of DHS
is on average greater than that of classical HS, which in turn results into better accuracy of the DHS
algorithm. A flow-chart of the algorithm has been provided in Figure 3.

3.1. Performance analysis

The efficiency of most EAs depends on their extent of explorative and exploitative tendencies during the
course of search. Exploitation means the ability of a search algorithm to use the information already
collected and thus to orient the search more towards the goal while exploration is the process that allows
introduction of new information into the population. Exploration helps the algorithm to quickly search
the new regions of a large search-volume. Proper balance between these two characteristics results into

8 P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator

enhanced performance [25]. Generally EAs explore the search space by the (genetic) search operators,
while exploitation is done via selection that promotes better individuals to the next generation.

Expected value of population variance form one generation to another generation is a good estimate
of the explorative power of a stochastic search algorithm. In this paper we analyze the evolution of the
population-variance of HS and its influence on the explorative power of the algorithm. We first find an
analytical expression for the population-variance of DHS and then compare it with the expected popu-
lation variance of classical HS to show that the formal algorithm possesses greater explorative power.
Since in HS type algorithms, each dimension is perturbed independently, without the loss of generality,
we carry forward our analysis for single-dimensional population members.

In DHS the perturbations are made independently for each component. As such, without loss of
generality, we may conduct the analysis on one-dimensional elements. Let us consider a population of
scalars x = {x1, x2, . . . , xm} with elements x1 ∈ R. The variance of this population is given by:

V ar(x) =
1
m

m∑
i=1

(xi − x̄)2 = x2 − x̄2 (6)

where, x̄ is population mean and x2 is quadratic population mean.
If the elements of the population are affected by some random elements, V ar(x) will be a random

variable and E[V ar(x)] will be the measure of the explorative power. Variance of DHS is calculated
below with the following assumptions.

Theorem 3.1. Let x = {x1, x2, . . . , xm} be the current population, y be an intermediate vector obtained
after random selection and harmony memory consideration and z the vector obtained after pitch adjusting
y. Let w = {w1, w2, . . . , wm} be the final population after selection. If

PHMCR = Harmonic Memory Consideration Probability

and, we consider the allowable range for the new values of x is {xmin, xmax} where xmax = a, xmax =
−a and the required random numbers are continuously uniformly distributed between 0 and 1, then

E[V (w)] =
2
3
V (x) +

a2

3

(
m− 1
m

)
(1− PHMCR)+

+
x2

m

(
PHMCR +

m− 1
m

)
− x̄2PHMCR

m2
{PHMCR + 2(m− 1)}

Proof:
Here x = {x1, x2, . . . , xm} is the current population. So the population mean x̄ is given by

x̄ =
1
m

m∑
i=1

xi (7)

And, quadratic population mean x2 as

x2 =
1
m

m∑
i=1

x2
i (8)

P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator 9

y is an intermediate vector obtained after random selection and harmony memory consideration. It is
obtained as:

y =

{
xl with probability PHMCR

xr with probability (1− PHMCR),
(9)

where l and k are two elements of {1, 2, . . . ,m} and xr is a new random number in the allowable range
{xmin, xmax} or {−a, a} and the index k is a random variable with values in {1, 2, . . . ,m}, with the
probability Pk = P (i = k) = 1

m .
Therefore,

E(xl) =
∑
l

xlPl =
1
m

∑
l

xl = x̄

E(x2
l) =

∑
l

x2
l Pl =

1
m

∑
l

x2
l = x2

(10)

Similarly, those for xr may be given as in Eq. (11) with detailed proof being provided in Appendix B.

E(xr) = 0

E(x2
r) =

a2

3

(11)

Using Eqs. (10) and (11), the following relations can be inferred

E(y) = E(xl)PHMCR + E(xr)(1− PHMCR) = PHMCRx̄ (12)

E(y2) = E(x2
l)PHMCR + E(x2

r)(1− PHMCR) = x2PHMCR +
a2

3
(1− PHMCR) (13)

Now z is the vector obtained after mutating y. This has the following structure:

z = y + F (xβ1 − xβ2),

where F is a uniformly distributed random number varying between 0 and 1. As such following Ap-
pendix A, we can say that

F = E(F) =
1
2

F 2 = E(F 2) =
1
3

(14)

Also, xβ1 and xβ2 are two randomly chosen members from x such that β1 6= β2.
Thus following equations hold

E(xβ1) = E(xβ2) = x̄

E[x2
β1

] = E[x2
β2

] = x2

E[xβ1xβ2] =
1

m(m− 1)

{
(mx̄)2 −mx2

} (15)

10 P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator

Here, the first two equations of (15) are self-evident from (10) while, the last one is derived in
Appendix C.

Therefore, using (15) we can write

E(z) = E(y) + E(F)E(xβ1 − xβ2)
= E(y) + F [E(xβ1)− E(xβ2)]
= x̄PHMCR

and,

E(z2) = E(y + F (xβ1 − xβ2)2)
= E

(
y2 + F 2(x2

β1
+ x2

β2
− 2xβ1xβ2) + 2Fy(xβ1 − xβ2)

)
= E[y2] + F 2(E[x2

β1
] + E[x2

β2
]− 2E[xβ1xβ2]) + 2FE[y](E[xβ1]− E[xβ2])

= E[y2] + 2F 2
m

m− 1
(x2 − x̄2). (16)

Now, w = {w1, w2, . . . , wm} is the final population obtained by replacing y with a random member
of the original population. Each element wk of the final population may be represented by the following
structure:

wk =

{
z with probability p = 1

m

xk with probability p = (1− 1
m)

Therefore,

E(wk) = E(z)p+ E(xk)(1− p)

=
1
m
x̄PHMCR +

m− 1
m

x̄

E(w2
k) = E(z2)p+ E(x2

k)(1− p). (17)

Now if w̄ represent the population mean of the final target population then,

w̄ =
1
m

∑
wk

E(w2) = E

(
1
m

∑
wk

)2

=
1
m2

E

∑w2
k +

∑∑
l 6=j

wlwj


=

1
m2

∑E(w2
k) +

∑∑
l 6=j

E(wlwj)


=

1
m2

{
mE(w2

k) +m(m− 1)E2(wk)
}

Also, if w2 = 1
m

∑
w2
k then,

E(w2) =
1
m
E
(∑

w2
k

)
= E(w2

k)

P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator 11

Variance of final population may be given as

V (w) = w2 − w̄2

So expected population variance may be given as

E (V (w)) = E[w2 − w̄2]

= E(w2
k)−

1
m
E(w2

k) +
m− 1
m

E2(wk)

=
m− 1
m

[
E(w2

k)− E
2(wk)

]
Putting the values from Eq. (17) and simplifying the results we get,

E(V (w)) =
2
3
V (x) +

a2

3

(
m− 1
m

)
(1− PHMCR) +

x2

m

(
PHMCR +

m− 1
m

)
−

− x̄2PHMCR

m2

{
PHMCR + 2(m− 1)

} (18)

ut

Lemma 3.1. Considering typical values ofBW (= 0.25) and PPAR (= 0.63) and assuming PHMCR =
1 and m = 8, inter-generation variance of DHS algorithm is greater than HS.

Proof:
For HS the inter-generation variance was given by [15] as

E(V ar(z)) =
(m− 1)
m

·


HMCR · var(x) +HMCR · (1−HMCR) · x2+
+HMCR · (1−HMCR) · PAR · bw · x̄+
+HMCR · PAR · bw2 ·

(
1
3 −

HMCR·PAR
4

)
+

+a2

3 · (1−HMCR)

 (19)

Putting typical values of bw (= 0.25) and PPAR (= 0.63) and assuming PHMCR = 1 and m = 8

E[V ar(z)]HS = 0.85V ar(x) + 0.0069 (20)

And, for DHS putting PHMCR = 1 and m = 8 we get,

E[V ar(z)]DHS = 0.901.V ar(x) (21)

∴ E[V ar(z)]DHS − E[V ar(z)]HS > 0 (22)
ut

The analysis undertaken above ignores the selection process. As such the actual value of variance of
the function is slightly lesser than the computed one. Nevertheless, it serves to give a value for variance
and proves superiority of DHS than the HS algorithm I terms of the explorative search behavior.

12 P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator

Table 1. Benchmark Functions Used

Function Mathematical Representation

Sphere Model f1(~x) =
n∑
i=1

x2
i

Rosenbrock f2(~x) =
n−1∑
i=1

[
100(xi+1 − x2

i)
2 + (xi − 1)2

]
Rastrigin f3(~x) =

n∑
i=1

[
x2
i − 10 cos(2πxi) + 10

]
Griewank f4(~x) = 1

4000

n∑
i=1

x2
i −

n∏
i=1

cos(xi√
i
) + 1

Ackley f5(~x) = −20 exp

(
−0.2

√
1
n

n∑
i=1

x2
i

)
− exp

(
1
n

n∑
i=1

cos 2πxi

)
+ 20 + e

Shekel’s Foxholes f6(~x) =

 1
500 +

25∑
j=1

1

j+
2∑
i=1

(xi−aij)6

−1

where

(aij) =

(
−32 −16 0 16 32 −32 . . . 0 16 32
−32 −32 −32 −32 −32 −16 . . . 32 32 32

)

4. The Experimental Setup

4.1. Benchmark Functions Used

The performance of the DHS algorithm has been evaluated on a test suite of seven well-known bench-
marks (Table 1) [26]. In Table 1, n represents the number of dimensions (we used n = 10, 20, 30).
The first two test functions are unimodal, having only one minimum. The others are multimodal, with a
considerable number of local minima in the region of interest. All benchmark functions have the global
minimum at the origin or very near to the origin [26]. Table 2 summarizes the initialization and search
ranges used for these functions. An asymmetrical initialization procedure has been used here following
the work reported in [27]. Finally, in order to validate the versatality of the proposed algorithm, sim-
ulation resutls have been provided for few shifted functions, constrained functions as well as two well
known complicated functions in Tables 6, ??, and ??.

4.2. Competitor Algorithms and Parametric Set up

Simulations were carried out to obtain a comparative performance analysis of the proposed method with
respect to: (a) classical HS [8], (b) IHS [15], (c) GHS [16], and one most popular DE variant called
DE/rand/1/bin [22]. For all the HS-variants we used the same population size for harmonic memory and
HMS was chosen to be equal to 10. IHS generally introduces a number of parameters, which should be
tuned for different problems. Here we disallow any kind of hand tuning of any of the parameters over
any benchmark problem. Hence, after performing a series of hand-tuning experiments, for IHS we use

P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator 13

Table 2. Search Ranges of Benchmark Functions

f Global Optimum Range of search Range of Initialization

f1 f1(~0) = 0 (−100, 100)n (50, 100)n

f2 f2(~1) = 0 (−100, 100)n (15, 30)n

f3 f3(~0) = 0 (−10, 10)n (2.56, 5.12)n

f4 f4(~0) = 0 (−600, 600)n (300, 600)n

f5 f5(~0) = 0 (−32, 32)n (15, 32)n

f6 f6(−31.95,−31.95) = 0.998 (−65.536, 65.536)2 (0, 65.536)2

HMCR = 0.95, PARmin = 0.35, PARmax = 0.99, bwmin = 1.00e− 06, and bwmax = 1
20(xmax−xmin)

over all the unconstrained problems as our preliminary experiments suggest that IHS with this parametric
setup provides uniformly good results over all the benchmarks presented here. Similarly for GHS, we
choose PARmin = 0.01, PARmax = 0.99, and HMCR = 0.9. For the classical HS algorithm we
selected HMCR = 0.9, PAR = 0.3 and bw = 0.01 following [15].

In case of DE/rand/1/bin algorithm, Np or population size is chosen as 10 times the search-space
dimensionality of the problem. We also took Cr = 0.9 and F = 0.8 [22].

4.3. Simulation Strategy

To make the comparison fair, the populations for all the competitor algorithms (for all problems tested)
were initialized using the same random seeds. We choose the number of fitness evaluations (FEs) as a
measure of computation time instead of ‘generations’ or ‘iterations’ since different algorithms usually
perform different amounts of tasks in their inner loops. To judge the accuracy of different algorithms,
we first let each of them run for a very long time over every benchmark function, until the number of
FEs exceeds a given upper limit (which was fixed depending on the complexity of the problem). Fifty
independent runs of each of the five contestant algorithms were carried out and the average and the
standard deviation of the best-of-run values were recorded. In order to compare the speeds of different
algorithms, we select a threshold value of the objective function for each benchmark problem. We run
each algorithm on a function and stop as soon as the best objective function value determined by the
algorithm falls below the predefined threshold. Then we note the number of FEs the algorithm takes. A
lower number of FEs corresponds to a faster algorithm. Note that each run of an algorithm is continued
until a maximum number of FEs is exceeded. The maximum number of FEs for each function is same
as the number of FEs for the previous experiment.

5. Experimental Results

5.1. Results for Numerical Benchmarks

Table 3 compares the algorithms on the quality of the optimum solution. The mean and the standard
deviation (within parentheses) of the best-of-run values for 30 independent runs of each of the four
algorithms are presented. Each algorithm was run up to a predetermined number of FEs (depending

14 P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator

Table 3. Average and the standard deviation of the best-of-run solution for 50 runs tested on seven benchmark
functions

Fun D Maxn FE
Mean Best Value

(Standard Deviation)
DHS IHS Classical HS GHS DE/rand/1/bin

f1

10 50,000 5.884900e-007 1.639500e-002 2.171200e-002 6.318541e+000 7.733437e-004
(6.646400e-006) (6.708000e-003) (4.732000e-003) (3.035200e+000) (6.7679e-007)

20 1× 105 6.429200e-006 2.893210e-001 1.426900e-001 9.618317e+000 6.845594e-005
(8.725800e-006) (4.892000e-002) (2.220100e-002) (3.994490e+000) (4.98644e-004)

30 2× 105 9.389000e-005 9.990920e-001(2.542532e-001 1.769400e+000 8.478346e-004
(6.520000e-004) (1.238010e-001) (3.055009e-002) (8.803482e-001) (4.664e-004)

f2

10 50,000 1.568433e-002 9.753570e+000 1.031847e+001 2.254647e+003 1.622342e-001
(2.357514e-003) (1.082548e+000) (4.172880e-001) (2.179374e+003) (4.2573e-005)

20 1× 105 2.864111e+000 5.959299e+001 4.663445e+001 4.468664e+003 8.86379e-001
(1.497365e+000) (2.589792e+001) (2.596948e+001) (3.825431e+003) (3.237e-005)

30 2× 105 1.045937e+001 6.15397e+001 5.553776e+001 6.355397e+002 5.23198e+001
(3.721272e+001) (1.100124e+001) (1.161574e+001) (3.543231e+002) (3.91179e-002)

f3

10 50,000 4.927550e-003 2.173265e+001 2.306190e+001 5.189726e+000 5.246318e-002
(7.426300e-001) (6.210750e+000) (6.695788e+000) (1.308674e+000) (3.94711e-002)

20 1× 105 6.262530e-001 8.543985e+001 6.930525e+001 8.764900e+000 1.870534e-001
(5.226480e-001) (1.381052e+001) (1.343840e+001) (3.102358e+000) (6.28432e-002)

30 2× 105 2.309900e-002 1.853878e+002 1.166632e+002 3.512368e+000 4.838537e+000
(1.693000e-002) (1.964701e+001) (1.370221e+001) (1.055009e+000) (3.872431e+001)

f4

10 50,000 2.701000e-002 9.035700e-002 6.340700e-002 2.266825e-001 2.327581e-003
(9.005000e-003) (1.298720e-001) (7.265900e-002) (1.400353e-001) (4.6573e-003)

20 1× 105 4.959500e-004 7.612600e-002 6.228300e-002 2.117310e-001 6.87334e-002
(5.200000e-004) (9.901100e-002) (1.311900e-002) (1.109799e-001) (5.32529e-002)

30 2× 105 1.316900e-002 7.334800e-001 7.301747e-001 9.785366e-001 2.19345e-001
(3.560000e-004) (8.200000e-003) (1.297544e-002) (1.295663e-001) (1.186345e-001)

f5

10 50,000 8.815280e-006 1.083798e+001 1.036288e+001 8.643679e+000 4.593572e-005
(7.634358e-006) (8.340050e-001) (6.978520e-001) (4.795448e-001) (9.44871e-005)

20 1× 105 3.647528e-005 1.259577e+001 1.163075e+001 8.297712e+000 1.736824e-003
(6.936542e-004) (7.375590e-001) (7.591900e-001) (2.890263e-001) (4.09364e-003)

30 2× 105 4.453663e-004 1.337918e+001 1.142695e+001 7.598800e+000 6.45453e-002
(3.657234e-003) (5.676430e-001) (5.157850e-001) (5.788477e-002) (3.432434e-002)

f6 2 1× 104 9.9800390e-001 9.9860553e-001 1.080039e+000 1.280884e+000 9.9890146e-001
(1.1562e-008) (4.26578e-003) (1.138973e-002) (1.89843e-004) (1.57087e-003)

upon the complexity of the problem). Missing values of standard deviation indicate a zero standard
deviation. The best solution in each case has been shown in bold.

Table 4 shows results of unpaired t-tests between DHS and the best of the three competing algorithms
in each case (standard error of difference of the two means, 95% confidence interval of this difference,
the t value, and the two-tailed P value). For all cases in Table 4, sample size = 60 and number of degrees
of freedom = 58. It is interesting to see from Tables 3 and 4 that the proposed DHS algorithm meets or
beats the nearest competitor in a statistically significant way.

Table 5 reports the number of runs (out of 50) that managed to find the optimum solution (within
the given tolerance) without exceeding the maximum no. of FEs, the mean number of FEs, and standard
deviations (within parenthesis) required by the algorithms to converge within the prescribed threshold
value. Entries marked as 0 indicate that no runs of the corresponding algorithm converged below the
threshold objective function value. Missing values of standard deviation in these tables also indicate a
zero standard deviation.

Tables 5 shows that, not only does DHS yield the most accurate results for nearly all the benchmark
problems, but it does so consuming the least amount of computational time. In addition, the number of
runs that converge below a pre-specified cut-off value is also greatest for EHS over most of the benchmark
problems covered here. This indicates the higher robustness (i.e. the ability to produce similar results
over repeated runs on a single problem) of the algorithm as compared to its other four competitors.

P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator 15

Table 4. Results of unpaired t-tests on the data of Table 3

Fn, Dim Std. Err t 95% Conf. Intvl Two-tailed P Significance

f1, 20 0.016 4.7691 -0.11130337 to < 0.0001 Extremely
-0.04549263 significant

f1, 30 0.006 43.008 -0.25620711 to < 0.0001 Extremely
-0.23341489 significant

f3, 10 0.275 17.067 -5.237055 to < 0.0001 Extremely
-4.137545 significant

f3, 20 0.575 14.201 -9.311759 to < 0.0001 Extremely
-7.011041 significant

f3, 30 0.567 6.1563 -4.6233206 to < 0.0001 Extremely
-2.3544994 significant

f4, 10 0.013 2.7723 -0.06381928 to 0.0075 Very Statistically
-0.01030072 significant

f5, 10 0.090 13.198 -1.361613 to < 0.0001 Extremely
-1.002987 significant

f4, 20 0.055 15.059 -0.9323926 to < 0.0001 Extremely
-0.7136074 significant

Usually in the community of stochastic search algorithms, robust search is weighted over the highest
possible convergence rate [28]. In Figure 4 we have graphically presented the rate of convergence of all
the methods for all the functions (in 30 dimensions). These results show that the proposed method leads
to significant improvements in most cases.

The functions f7 − f11, listed below, are examples of GA-hard constrained optimization problems,
extensively studied in [29, 30, 31, 32, 33] and in this paper we have transformed them into an uncon-
trained one by adding a penalty term in the following way:

ψi(~x) = fi(~x) +Ai ·
Ci∑
j=1

max {0, gj(~x)} (23)

where i = 7, . . . , 11, Ci is the number of constraints with the i-th benchnark, and Ai is the static
penalty coefficient for the i-th contrained benchmark problem. Functions f8 and f11 include an equality
constraint, which has been converted into inequality constraint by using |h(~x)− δ| ≤ 0 using the degree
of violation δ = 10−4. Values of the static penalty coefficients are as follows [34]: A7 = 0.5, A8 = 105,
A9 = 104,A10 = 500, andA11 = 10. The following constrained optimization functions were considered
in this paper:

Minimize

f7(x) = 5
4∑
i=1

xi − 5
4∑
i=1

x2
i −

13∑
i=5

xi

16 P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator

Table 5. Number of runs (out of 50) converging to the cut off fitness value for six benchmark functions

Fun D Maxn FE
No. of runs converging to the cut off

DHS IHS Classical HS GHS DE/rand/1/bin

f1

10 1.00e-005 50,26253.20 50,32044.22 50,13423.68 42,41544.34 50,33932.64
(445.34) (610.298) (341.827) (8532.261) (1450.492)

20 1.00e-005 31,68931.5 42,18298.21 44,7364.32 22,85367.86 34,46296.46
(5712.65) (1340.34) (2235.83) (4540.12) (674.25)

30 1.00e-005 29,172228.72 45,84712.34 41,36523.46 16,74782.68 21,23876.62
(6473.45) (8952.34) (7326.74) (6638.93) (7821.63)

f2

10 1.00e-003 24,454563.25 10,137628.60 0 11,167322.43 13,72874.34
(7653.44) (10183.23) (0.4291) (67232.91)

20 1.00e-003 13,40943.68 0 1,48585 0 0
(5831.84)

30 1.00e-003 8,83723.25 0 0 0 0

f3

10 1.00e-005 12,113817.52 0 0 0 0
(12723.837) 0 0 0 0

20 1.00e-005 3,179834.33 0 0 0 0
(21353.82)

30 1.00e-005 50,34983.68 32,39782.57 0 0 50,27474.24
(4481.73) (7434.12) (5327.08)

f4

10 1.00e-005 50,83924.16 25,88731.04 0 0 50,73483.50
(4028.47) (2139.57) (11142.76)

20 1.00e-005 43,129834.31 0 27,122833.73 0 0
(10835.44) (9738.62)

30 1.00e-005 12,154982.76 0 19,167909.57 0 0
(32432.87) (5672.89)

f5

10 1.00e-005 32,38769.46 21,37583.67 26,41029.75 0 0
(3692.58) (7432.82) (3732.68)

20 1.00e-005 25,76093.80 17,75834.83 15,85734.46 0 0
(4827.57) (6907.89) (5003.68)

30 1.00e-005 50,27243.44 32,29583.49 47,37263.92 7,48374.34 15,35563.46
(447.03) (1241.57) (1832.45) (227.48) (1519.46)

P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator 17

(a) Sphere Model (f1) (b) Generalized Rosenbrock’s Function (f2)

(c) Generalized Rastrigin’s Function (f3) (d) Generalized Griewank’s Function (f4)

(e) Generalized Ackley’s Function (f5) (f) Shekel’s Foxhole Function (f6)

Figure 4. Progress to the optimum solution for numerical benchmarks

18 P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator

Subject to:

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0
g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0
g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0
g4(x) = −8x1 + x10 ≤ 0
g5(x) = −8x2 + x11 ≤ 0
g6(x) = −8x3 + x12 ≤ 0
g7(x) = −2x4 − x5 + x10 ≤ 0
g8(x) = −2x6 − x7 + x11 ≤ 0
g9(x) = −2x8 − x9 + x12 ≤ 0

where the bounds are 0 ≤ xi ≤ 1 (i = 1, . . . , 9), 0 ≤ xi ≤ 100 (i = 10, 11, 12) and 0 ≤ x13 ≤
1. The global optimum is at x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) where f(x∗) = −15. Constraints
g1, g2, g3, g4, g5 and g6 are active.

Maximize

f8(x) =
(√
n
)n n∏

i=1

xi

Subject to

h(x) =
n∑
i=1

x2
i − 1 = 0,

where n = 10 and 0 ≤ xi ≤ 1, (i = 1, . . . , n). The global optimum is at

x∗ =
1√
n
,

i = (1, . . . , n) where f(x∗) = 1
Minimize

f9(x) = 5.3578547x2
2 + 0.8356891x1x5 + 37.293239x1 − 40792.141

Subject to:

g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0
g2(x) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0
g3(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2

3 − 110 ≤ 0
g4(x) = −80.51249− 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x2

3 + 90 ≤ 0
g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0010985x3x4 − 25 ≤ 0
g6(x) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3 − 0.0010985x3x4 + 20 ≤ 0

where the bounds are 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45 and 27 ≤ xi ≤ 45, (i = 3, 4, 5). The global
optimum is at x∗ = (78, 33, 29.995256025682, 45, 36.775812905788) where f(x∗) = −30665.539.
Constraints g1 and g6 are active.

P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator 19

Minimize

f10(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5 + 7x2
6 + x4

7 − 4x6x7 − 10x6 − 8x7

Subject to:
g1(x) = −127 + 2x2

1 + 3x4
2 + x3 + 4x2

4 + 5x5 ≤ 0
g2(x) = −282 + 7x1 + 3x2 + 10x2

3 + x4 − x5 ≤ 0
g3(x) = −196 + 23x1 + x2

2 + 6x2
6 − 8x7 ≤ 0

g4(x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10, (i = 1, . . . , 7).
The global optimum is at

x∗ = (2.330499, 1.951372,−0.4775414, 4.365726,−0.6244870, 1.038131, 1.594227)

where f(x∗) = 680.6300573. Constraints g1 and g4 are active.
Minimize

f(x) = x2
1 + (x2 − 1)2

Subject to:
h(x) = x2 − x2

1 = 0

where −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1. The global optimum is at x∗ = (± 1√
2
, 1

2), where f(x∗) = 0.75.
Besides comparing DHS with the two state-of-the-art HS variants we also take into account here

another evolutionary algorithm – RY [29] that is especially devised for optimizing constrained objective
functions. Numerical results for RY have been taken from [29]. Since the authors in [29] used a ter-
mination criterion of 1750 generations (corresponding to 350 000 FEs) for the RY algorithm over the
five benchmarks we test here, in order to make the comparison fair, we compare both the qualities of
their final solutions and the computational cost at the same. Accordingly, the termination criterion of
the three HS variants is that the quality of the best solution cannot further be improved in the successive
50 generations for each function. We reported the results for 30 independent runs of DHS, GHS, and
IHS with different random seeds in table 6. In each run the three HS variants start from the same initial
population. The results for the RY algorithm are also for 30 independent trials for each function.

Table 6 indicates that DHS appears to be computationally more efficient than the two contestant HS-
variants as well as the RY algorithm at least over the test-suite used here for constrained optimization
problems.

5.2. Application to the Spread Spectrum Radar Poly-phase Code Design Problem

A famous problem of optimal design arises in the field of spread spectrum radar poly-phase codes [35].
Such a problem is very well-suited for the application of global optimization algorithms like DE. The
problem can be formally stated as:

Global min f(~x) = max{ϕ1(~x), . . . , ϕ2m(~x)}, (24)

20 P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator

Table 6. Simulation results for constrained functions f7 − f11(best out of 30 runs).

Func Value type DHS IHS GHS RY Algorithm

f7

Mean -15.000 -14.9924 -14.9961 -15.000
Std. Dev 0.00 0.00167 0.00235 0.00

Mean No. of FEs 35635.64 176390.82 152 738.56 350
(Std. Dev) (1753.46) (20193.57) (11378.36)

% of Trials giving 100% 70% 90% 100%
Feasible Solutions

f8

Mean -30665.539 -30664.831 -30662.242 -30665.539
Std. Dev 2.732× 10−10 4.758× 10−4 1.468× 10−3 2× 10−5

Mean No. of FEs 65783.72 104729.84 85082.07 350
(Std. Dev) (3726.68) (6579.46) (7547.84)

% of Trials giving 100% 80% 90% 100%
Feasible Solutions

f9

Mean 5126.555182 5128.942 5130.382 5128.881
Std. Dev 0.6526 I.12 III.89 3.V

Mean No. of FEs 67932.56 217841.49 117264.68 350
(Std. Dev) (4526.7) (10928.52) (9825.37)

% of Trials giving 100% 90% 87% 100%
Feasible Solutions

f10

Mean 680.658897 721.472 694.738 680.656
Std. Dev 0.00133 10.732 2.652 0.036

Mean No. of FEs 70936.48 192831.29 90293.76 350
(Std. Dev) (4838.77) (26712.43) (7362.48)

% of Trials giving 100% 76% 84% 100%
Feasible Solutions

f11

Mean 0.75000 0.750472 0.767613 0.75000
Std. Dev 2.638× 10−12 0.0084 0.067 8× 10−5

Mean No. of FEs 28983.78 57583.30 48723.42 350
(Std. Dev) (3008.46) (1272.84) (2957.03)

% of Trials giving 100% 84% 79% 100%
Feasible Solutions

where ~x = {(x1,, xn) ∈ <n|0 ≤ xj ≤ 2π, j = 1, . . . , n} and m = 2n− 1, with

ϕ2i−1(~x) =
n∑
j=i

cos

 j∑
k=|2i−j−1|−1

xk

 i = 1, 2, . . . , n

ϕ2i(~X) = 0.5 +
n∑

j=i+1

cos

 j∑
k=|2i−j−1|−1

xk

 , i = 1, 2, . . . , n− 1

ϕm+i(~X) = −ϕi(~X), i = 1, 2, . . . ,m (25)

P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator 21

Figure 5. f(~X) of equation (22) for D = 2.

Table 7. Average and standard deviation (in parentheses) of the best-of-run solutions for 50 runs over the spread
spectrum radar poly-phase code design problem (number of dimensions n = 19 and n = 20). For all cases each
algorithm was run up to 5× 106 FEs.

N

Mean Best-of-run solution
(standard deviation)

DE/rand/1/bin IHS HS GHS DHS Statistical Significance
(by unpaired t-test)

19 7.4949e-01 7.5834e-01 7.5932e-01 7.6094e+01 7.4734e-01 Very
(8.93e-03) (9.56e-04) (3.88e-05) (4.72e-03) (5.84e-04) Significant

20 8.5746e-01 8.3982e-01 8.3453e-01 8.4283e-01 8.0635e-01 Extremely
(4.83e-03) (3.98e-03) (6.53e-04) (3.44e-02) (2.7343e-03) Significant

According to [35] the above problem has no polynomial time solution. The objective function for
n = 2 is shown in Figure 5.

In Table 7, we show the mean and the standard deviation (within parentheses) of the best-of-run
values for 30 independent runs of each of the six algorithms over the two most difficult instances of
the radar poly-phase code design problem (for dimensions n = 19 and n = 20). Figure 6 graphically
presents the rate of convergence of the contestant algorithms for the 20 - dimensional radar code design
problem.

Table 7 and Figure 6 clearly indicates that DHS can achieve more accurate and statistically better
results as compared to all the contestants consuming less amount of computational time for this difficult
real life optimization problem.

22 P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator

Figure 6. Progress to the optimum solution for spread spectrum radar poly-phase code problem (n = 20).

6. Conclusions

This paper has presented an improved variant of the classical Harmony Search metaheuristic by blending
with it a difference vector-based mutation operator borrowed from the DE family of algorithms. A
theoretical analysis indicates that the population-variance of HS can be enhanced by the incorporation
of the differential mutation operator. This intensifies the explorative power of HS and the algorithm,
modified in this way, is able to beat the state-of-the-art variants of HS over popular unconstrained and
constrained benchmark functions in a statistically meaningful way. The Differential HS (DHS) was
found to outperform the classical HS and its two variants namely GHS and HIS in terms of final accuracy,
convergence speed and robustness. Checking the effect of variation of the scale factor F of the differential
mutation operator may be a worthy issue for future investigations. Other modifications to the algorithm
leading to better trade-offs between explorative and exploitative tendencies should also be investigated
both empirically and theoretically. Future works will also focus on studying the applications of DHS on
engineering optimization problems.

A. Estimation of moments of a uniformly distributed random number

Let, R be a particular instantiation of a continuously uniformly distributed random number, lying between
0 and 1. Probability distribution of such a random number may be given as shown in the figure below:

Here ψ(z) = Continuous Uniform Probability Distribution Function. In this case,p = 0, q = 1
and z = R.

Therefore, R and R2 may be estimated as shown below

P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator 23

Figure 7. Graphical plot of continuous uniform probability distribution

E(R) =
∫ 1

0
Rf(R)dR =

∫ 1

0
RdR =

[
R2

2

]1

0

=
1
2

E(R2) =
∫ 1

0
R2f(R)dR =

∫ 1

0
R2dR =

1
3

B. Calculation of E(xr) and E(x2
r)

Let, xr be a member of the one-dimensional population, initialized randomly in the search space. Thus
in order to find E(xr) and E(x2

r), xr may be modeled as follows:

xr = −a+ 2Ra

where, R is a particular instantiation of a continuously uniformly distributed random number, lying
between 0 and 1, while and represents the upper and lower bound of the allowable initialization range.

∴ x2
r = a2(4R2 − 4R+ 1)

Using statistical estimates of the uniformly distributed random number ‘R’ , as proved in Appendix
A, we can estimate those of xr as follows:

E(xr) = −a+ 2aE(R) = −a+ 2a · 1
2

E(x2
r) = a2

{
4E(R2)− 4E(R) + 1

}
= a2

{
4 · 1

3
− 4 · 1/2

+
1
}

=
a2

3

24 P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator

C. Calculation of E[xβ1
xβ2

]

E[xβ1xβ2] =
∑
β1

β1 6=β2

∑
β2

xβ1xβ2P (xβ1 , xβ2)

=
1

m(m− 1)

∑
β1

β1 6=β2

∑
β2

xβ1xβ2

=
1

m(m− 1)

{(∑
xβ1

)2
−
∑

x2
β1

}
=

1
m(m− 1)

{
(mx̄)2 −mx2

}

References

[1] T. Bäck, D. Fogel, Z. Michalewicz, Handbook of Evolutionary Computation, Oxford Univ. Press, 1997.

[2] A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing, Springer, 2003.

[3] D. Ashlock, Evolutionary Computation for Modeling and Optimization, Springer, 2006.

[4] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to Artificial System, Oxford
University Press, New York, 1999.

[5] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence, Morgan Kaufmann, San Francisco, CA, 2001.

[6] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, John Wiley & Sons, 2006.

[7] Z.W. Geem, J.H. Kim, and G.V. Loganathan, “A new heuristic optimization algorithm: harmony search”,
Simulation 76(2), 60–68, 2001.

[8] K.S. Lee and Z.W. Geem, “A new meta-heuristic algorithm for continuous engineering optimization: har-
mony search theory and practice”, Computer Methods in Applied Mechanics and Engineering, Eng, 194,
3902–3933, 2004.

[9] Z. W. Geem (Ed.), Music-Inspired Harmony Search Algorithm: Theory and Applications, Studies in Compu-
tational Intelligence, Springer, 2009.

[10] Z.W. Geem, J.H. Kim, and G.V. Loganathan, “Harmony search optimization: application to pipe network
design”, Int. J. Model. Simul, 22,(2), 125–133, 2002.

[11] K. S. Lee and Z.W. Geem, “A new structural optimization method based on the harmony search algorithm”,
Computers and Structures, 82, pp. 781–798, Elsevier, 2004.

[12] Z. W. Geem, K. S. Lee, and Y. Park, “Application of harmony search to vehicle routing”, American Journal
of Applied Sciences, 2(12), 1552-1557, 2005.

[13] A. Vasebi, M. Fesanghary, and S. M. T. Bathaeea, “Combined heat and power economic dispatch by harmony
search algorithm”, International Journal of Electrical Power and Energy Systems, Vol. 29, No. 10, 713-719,
Elsevier, 2007.

[14] Z. W. Geem, “Optimal scheduling of multiple dam system using harmony search algorithm”, Lecture Notes
in Computer Science, Vol. 4507, 316-323, Springer, 2007.

P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator 25

[15] M. Mahdavi, M. Fesanghary, and E. Damangir, “An improved harmony search algorithm for solving opti-
mization problems”, Applied Mathematics and Computation, Vol. 188, 1567–1579, Elsevier Science, 2007.

[16] M. G. H. Omran and M. Mahdavi, “Global-best harmony search”, Applied Mathematics and Computation,
Vol.198, 643–656, Elsevier Science, 2008.

[17] M. Fesanghary, M. Mahdavi, M. Minary-Jolandan, Y. Alizadeh, “Hybridizing sequential quadratic program-
ming with HS algorithm for engineering optimization”, Computer Methods in Applied Mechanics and Engi-
neering, Volume 197, Issues 33- 40, 1, pp. 3080-3091, Elsevier, June 2008.

[18] P.T. Boggs and J.W. Tolle, “Sequential quadratic programming”, Acta Numerica, 4, 1–52, 1995.

[19] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies: a comprehensive introduction”, Natural Computing,
1(1):3-52, 2002.

[20] R. Storn and K. V. Price, “Differential evolution - A simple and efficient adaptive scheme for global op-
timization over continuous spaces”, Technical Report TR-95-012, ICSI, http://http.icsi.berkeley.
edu/~storn/litera.html, 1995.

[21] , “Differential Evolution – a simple and efficient heuristic for global optimization over continuous spaces”,
Journal of Global Optimization, 11(4) 341–359, 1997.

[22] R. Storn, K. V. Price, and J. Lampinen,Differential Evolution - A Practical Approach to Global Optimization,
Springer, Berlin, 2005.

[23] D. Zaharie, “Critical values for the control parameters of differential evolution algorithms”, in R. Matousek,
P. Osmera (eds.), Proc. of Mendel 2002, 8-th International Conference on Soft Computing, Brno,Czech
Republic, June 2002, pp. 62-67.

[24] R. Parncutt, Harmony: A Psychoacoustical Approach, Springer Verlag, 1989.

[25] A.E. Eiben and C.A. Schippers, “On evolutionary exploration and exploitation”, Fundamenta Informaticae,
35, 1-16, IOS Press, 1998.

[26] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE Transactions on Evolutionary
Computation, 3(2), 82-102, July 1999.

[27] P. J. Angeline, “Evolutionary optimization versus particle swarm optimization: Philosophy and the perfor-
mance difference,” Lecture Notes in Computer Science (vol. 1447), Proc. of 7th International Conference
on. Evolutionary Programming – Evolutionary Programming VII, pp. 84-89, 1998

[28] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,” IEEE Trans-
actions on Evolutionary Computation, vol.3, no. 2, pp. 124-141, 1999.

[29] T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evolutionary optimization,” IEEE Transac-
tions on Evolutionary Computation, vol. 4, no. 3, pp. 284–294, Sep. 2000.

[30] S. A. Kazarlis, S. E. Papadakis, J. B. Theochairs, and V. Petridis, “Microgenetic algorithms as generalized
hill-climbing operators for GA optimization,” IEEE Transactions on Evolutionary Computation, vol. 5, no.
3, pp. 204–217, Jun. 2001.

[31] S. Koziel and Z. Michalewicz, “Evolutionary algorithms, homomorphous mappings, and constrained param-
eter optimization,” IEEE Transactions on Evolutionary Computation, vol. 7, no. 1, pp. 19–44, 1999.

[32] Z. Michalewicz and G. Nazhiyath, “Genocop III: A co-evolutionary algorithm for numerical optimization
problems with nonlinear constraints,” in Proceedings of the 2nd IEEE Conference on Evolutionary Compu-
tation. Piscataway, NJ: IEEE Press, vol. 2, pp. 647–651, 1995.

26 P. Chakraborty et al. / An Improved Harmony Search Algorithm with Differential Mutation Operator

[33] Z. Michalewicz and M. Schoenauer, “Evolutionary algorithms for constrained parameter optimization prob-
lems,” Evolutionary Computation, vol. 4, no. 1, pp. 1–32, 1996.

[34] L. Jiao, Y. Li, M. Gong, and X. Zhang, “Quantum-inspired immune clonal algorithm for global numerical
optimization”, IEEE Transactions on System, Man, and Cybernetics, Part B, Vol. 38, No.5, 1234-1253, 2008.

[35] N. Mladenović, J. Petrovic, V. Kovacevic-Vujicic, and M. Cangalovic, “Solving spread-spectrum radar
polyphase code design problem by tabu search and variable neighborhood search,” European Journal of
Operational Research, 153, 389-399, 2003.

