
 
 

 

  

Abstract — Design of non-uniform linear antenna arrays is 
one of the most important electromagnetic optimization 
problems of current interest. In this article, an adaptive 
Differential Evolution (DE) algorithm has been used to 
optimize the spacing between the elements of the linear array to 
produce a radiation pattern with minimum side lobe level and 
null placement control. DE is arguably one of the best real 
parameter optimizers of current interest takes very few control 
parameters and is easy to implement in any programming 
language. In this study two very simple adaptation schemes are 
used to regulate the control parameters F and Cr, upon which 
the performance of DE is critically dependent. The adaptation 
schemes are based on the objective function values of the target 
vectors and donor vectors. The adaptive DE-variant has been 
used to solve three difficult instances of the design problem and 
the optimization goal in each example is easily achieved. The 
results of the proposed algorithm have been shown to meet or 
beat the recently published results obtained using other state-
of-the-art metaheuristics like the Genetic Algorithm (GA), 
Particle Swarm Optimization (PSO), Memetic Algorithms 
(MA), and Tabu Search (TS) in a statistically meaningful way. 
 
Keywords: Antenna array, differential evolution, genetic 
algorithms, particle swarm optimization, , metaheuristics 

I. INTRODUCTION 

Antenna arrays play an important role in detecting and 
processing signals arriving from different directions. 
Compared with a single antenna that is limited in directivity 
and bandwidth, an array of sensors can have its beam-pattern 
modified with an amplitude and phase distribution called the 
weights of the array. After preprocessing the antenna 
outputs, signals are weighted and summed to give the 
antenna array beam-pattern. The antenna array pattern 
synthesis problem consists of finding weights that satisfy a 
set of specifications on the beam-pattern [1 – 3].  
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 The goal in antenna array geometry synthesis is to 
determine the physical layout of the array that produces a 
radiation pattern that is closest to the desired pattern. The 
shape of the desired pattern can vary widely depending on 
the application. Many synthesis methods are concerned with 
suppressing the Side Lobe Level (SLL) while preserving the 
gain of the main beam [4]. Other methods deal with the null 
control to reduce the effects of interference and jamming. 
For the linear array geometry, this can be done by designing 
the spacing between the elements, while keeping a uniform 
excitation over the array aperture. Other methods of 
controlling the array pattern use non-uniform excitation and 
phased arrays [1]. 

It is well known that the classical derivative-based 
optimization techniques need a starting point that is 
reasonably close to the final solution, or they are likely to be 
stuck in a local minimum. As the number of parameters and 
hence the size of the solution space increases, the quality of 
the solution strongly depends on the estimation of the initial 
values. If the initial values fall in a region of the solution 
space where all the local solutions are poor, a local search is 
limited to finding the best of these poor solutions. The 
computational drawbacks of existing numerical methods 
have forced the researchers all over the world to rely on 
metaheuristic algorithms founded on simulations of some 
natural phenomena to solve antenna problems. These 
algorithms use an objective function, optimization of which 
leads to the side lobe suppression and null control [5]. 
Metaheuristic algorithms such as GAs [6 - 8], Simulated 
Annealing (SA) [9], Tabu Search [10], Taguchi’s method 
[11], Memetic Algorithms (MAs) [12], and PSO [13, 14] 
have already used in the design of antenna arrays, e.g. see [5, 
15 – 19]. 

The Differential Evolution (DE) [20 – 23] algorithm 
emerged as a very competitive form of evolutionary 
computing more than a decade ago. The performance of DE 
is severely dependent on two of its most important control 
parameters: The crossover rate (Cr) and scale factor (F) 
[23]. Over the past decade many claims and counter-claims 
have been reported regarding the tuning and adaptation 
strategies of these control parameters. Some objective 
functions are very sensitive to the proper choice of the 
parameter settings in DE [24]. Therefore, researchers 
naturally started to consider some techniques to 
automatically find an optimal set of control parameters for 
DE [25 – 30]. Most recent trend in this direction is the use of 
self-adaptive strategies like the ones reported in [28] and 
[30]. However, self-adaptation schemes usually make the 
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programming fairly complex and run the risk of increasing 
the number of function evaluations. This article suggests a 
simple automatic tuning method for the scale factor and 
crossover rate of population members in DE, based on their 
individual fitness. The key sense of this adaptation 
mechanism is that if a search-agent (DE-vector) moves near 
to the optimum, its mutation step-size decreases and during 
crossover, it passes more genetic information to its offspring 
(trial vector in DE terminology) so as to favor exploitation. 
However, if the agent moves away from the optima, then it 
is more perturbed and during DE-type crossover, the 
offspring inherits lesser genetic information from the parent, 
so that the agent may be able to explore alternate regions 
quickly.  

The proposed DE-variant is applied to three numerical 
instantiations of the linear array design problem have been 
used to illustrate the application of the algorithm. 
Comparison with the results obtained with other best known 
metaheuristics like GA, PSO, TS, MA etc. reflects the 
superiority of this modified DE in a statistically significant 
way. 

The rest of the paper is organized as follows. A 
formulation of the array pattern synthesis as an optimization 
task has been discussed in Section 2. Section 3 provides a 
comprehensive overview of the Classical DE algorithm. 
Section 4 gives the details of the modification of DE. 
Experimental settings have been discussed and the results 
have been presented in Section 5. Section 6 finally 
concludes the paper and unfolds a few future research issues. 
 

II. PROBLEM FORMULATION AND DESIGN 
An antenna array is a configuration of individual radiating 

elements that are arranged in space and can produce 
direction radiation pattern. For a linear antenna array, let us 
assume that there are 2N isotropic radiators placed 
symmetrically along the x-axis. The array geometry is 
shown in Figure 1. 

 
 
 
 
 
 
 
 
 

FIGURE 1: SYMMETRICALLY PLACED LINEAR ANTENNA 
   

The radiation pattern of the array depends on the distance 
between the elements, the amplitudes and phase excitation of 
the elements and also the radiation of the individual 
elements [31]. Since the array elements are identical we can 
assume the radiation pattern of the array considering the sum 
of all contributing signals of individual elements. The above 
relation is often referred as pattern multiplication, which 
indicates that the total field of the array is equal to the 

product of the field due to a single element located at the 
origin and a factor called called array factor, AF, defined as 

! 

AF "( ) = 2. In .cos k.xn .cos "( ) +"n( )( )
n=1

N
#            (1) 

where, 

wave number 

= Excitation magnitude of the n-th element 

Phase of the n-th element 

= Position of the n-th element 
If we further assume a uniform excitation of amplitude 

and phase (i. e.  and = 0 for all elements), the 
array factor can be further simplified as, 

! 

AF "( ) = 2. cos k.xn .cos "( )[ ]
n=1

N
#                  (2)               

Now the statement of the problem, addressed here simply 
reduces to: apply the DE algorithm to find the position   
of the array elements that will result into an array beam with 
minimum Side Lobe Level (SLL) and if desired, nulls at 
specific locations. For side lobe suppression the objective 
function is, 
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f1 =
1

" i#i
$ AF #( )

li#

ui#
%

2

d#                      (3) 

And for null control we use: 

! 

f2 = AF "k( )
k
# 2

                                      (4) 

To minimize both of them we use sum of (3) and (4) as the 
objective function of the proposed DE-variant. Note that in 
(3) represents the bandwidth to suppress where 

! 

" i# =

! 

ui" # li" , and in (4) is the direction of the nulls.                 

III. CLASSICAL DIFFERENTIAL EVOLUTION – ON OUTLINE 
 DE is a simple real-coded evolutionary algorithm. It works 
through a simple cycle of stages, which are detailed below. 

A. Initialization of the Parameter Vectors 
 
It begins with a randomly initiated population of NP D 
dimensional real-valued parameter vectors. Each vector, also 
known as genome/chromosome, forms a candidate solution 
to the multi-dimensional optimization problem. We shall 
denote subsequent generations in DE by

! 

G = 0,1...,Gmax . 
Since the parameter vectors are likely to be changed over 
different generations, we may adopt the following notation 
for representing the i-th vector of the population at the 
current generation:                                                                  

  

! 

! 
X i,G = [ x1,i,G , x2,i,G , x3,i,G ,....., xD,i,G ].                (5) 



 
 

 

The initial population (at

! 

G = 0) should cover the entire 
search space as much as possible by uniformly randomizing 
individuals within the search space constrained by the 
prescribed minimum and maximum bounds: 

 
B. Mutation with Difference vectors 
 

After initialization DE creates a donor vector  

! 

! 
V i,G , 

corresponding to each population member or target 
vector  

! 

! 
X i,G in the current generation through mutation.  It is 

the method of creating this donor vector, which 
differentiates between the various DE schemes. Among very 
commonly used five variants of mutation strategies very 
important one is : 
 “DE/best/1”:

  

! 

! 
V i,G =

! 
X best,G + F " (

! 
X 

r1
i ,G

#
! 
X 

r2
i ,G
).           (6)  

The indices

! 

r1
i,

! 

r2
iare mutually exclusive integers randomly 

chosen from the range [1, NP], and all are different from the 
index i. These indices are randomly generated once for each 
donor vector. The scaling factor F is a positive control 
parameter for scaling the difference vectors.  

! 

! 
X best,G  is the 

best individual vector with the best fitness (i.e. lowest 
objective function value for minimization problem) in the 
population at generation G.  

 
C .Crossover 
 
The donor vector exchanges its components with the target 
vector    

! 

! 
X i,G  under this operation to form the trial vector 

  

! 

! 
U i,G . The DE family of algorithms can use two kinds of 
crossover methods - exponential (or two-point modulo) and 
binomial (or uniform) [4]. In this article we focus on the 
widely used binomial crossover that is performed on each of 
the D variables. In this case, the number of parameters 
inherited from the donor has a (nearly) binomial distribution. 
The scheme may be outlined as:  

 

! 

u j,i,G  =      ,   if (

! 

randi, j [0,1) " Cr or 

! 

j = jrand  

                       

! 

x j,i,G , otherwise,                                    (7)    
where, as before, 

! 

randi, j [0,1) is a uniformly distributed 
random number, which is called a new for each j-th 
component of the i-th parameter vector. 

! 

jrand " [1,2,....,D] is a randomly chosen index, which 
ensures that   

! 

! 
U i,G gets at least one component from   

! 

! 
V i,G . 

 
D. Selection 

 

The next step of the algorithm calls for selection to 
determine whether the target or the trial vector survives to 
the next generation i.e. at . The selection operation 
is described as: 

  

! 

! 
X i,G +1  

! 

=
! 

U i,G ,        if    

! 

f (
! 

U i,G ) " f (
! 
X i,G )  

         

! 

=
! 
X i,G ,        if   

! 

f (
! 

U i,G ) > f (
! 
X i,G ) ,                              (8) 

where   is the objective function to be minimized.  
Note that throughout the article, we shall use the terms 
objective function value and fitness interchangeably. But, 
always for minimization problems, a lower objective 
function value will correspond to higher fitness. 

 
         IV. FITNESS BASED ADAPTATION OF DE (FiADE) 

 
 In this article we firstly aim at reducing F when the 
objective function value of any vector nears the minimum 
objective function value so far obtained in the population. In 
this case the vector is expected to suffer lesser perturbation 
so that it may undergo a fine search within a small 
neighborhood of the suspected optima. Equations (9) and 
(10) show two different schemes for varying the value of F 
for the i-th target vector and these schemes have been 
applied alternatively to determine the scale factor for each 
individual population member following a certain criteria to 
be discussed next. 

Scheme 1: 

! 

Fi = 0.8 * "fi
# + "fi

$ 

% 
& 

' 

( 
) ,                                  (9) 

where

! 

" = 1.00e#14 + $fi 10  and
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"fi = f (
! 
X i ) # f (

! 
X best) . 
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( 

) 
) * 0  as

! 

"fi # 0 . Also when 

! 

"fi  is large 

! 

"
#fi

$ 0  and consequently

! 

Fi " 0.8 .  

Scheme 2: 

! 

Fi = 0.8 * 1" e"#fi( )                                   (10) 

Figures 2 shows the variation of F with  in two different 
scales. As can be seen from Figure 2, the two plots intersect 
at approximately 

! 

"f = 2.4 .So from Figure 2, it is evident 
that as long as scheme 2 results greater values of 
F, which helps the vector to explore larger search volume. 
But as soon as falls below 2.4, scheme 1 starts reducing 
F drastically helping the vector to finely search the 
surroundings of the suspected optima. 
 
Thus the adaptation of the scale factor for the i-th target 
vector takes place in the following way: 
if 

! 

"fi > 2.4 , 

              

! 

Fi = 0.8 * 1" e"#fi( ), 

else 

! 

Fi = 0.8 * "fi
# + "fi

$ 

% 
& 

' 

( 
) , 

Vectors that are distributed away from the current best 
vector in fitness-space have their F values large (due to 
scheme 2) and keeps on exploring the fitness landscape, 
maintaining adequate population diversity. 
 
 
 
 
 
 



 
 

 

 
 
 
 
 
 
 
 
 
 
 

FIGURE 2: VARIATION OF F WITH 

! 

"f VARYING IN SCALE OF 1 TO 10 
FOR SCHEMES 1 AND 2 OUTLINED IN EQUATIONS (9) AND (10). 

 
Similarly we adapt the values of crossover rate Cr associated 
with each target vector according to the fitness of the donor 
vector produced. The key sense of this adaptation is that if 
Cr is higher, then more genetic information will be passed to 
the trial vector from the donor vector. So if the donor vector 
yields an objective function value lesser than the minimum 
value attained by the current population, then more of its 
features should be encompassed into the trial vector obtained 
after the crossover operation. If the solution of the donor 
vector is better, Cr should be larger; otherwise, it should be 
smaller. Cr updating strategy is divided into two cases: if 
donor’s objective value is less than that of the best vector of 
the current population, a high constant value of Cr in 
equation (11a) is used, otherwise updating strategy  in (11b) 
is used;  

      

  

! 

Cri =

Crconst ,                                                           (11a)

Crmin +
Crmax

1+ "fdonor _ i
,                                   (11b)

# 

$ 
% 

& 
% 

 

where 
  

! 

"fdonor _ i = f (
! 
V i ) # f (

! 
X best) , 

! 

Crmin = 0.1and 

! 

Crmax = 0.7 . 

! 

Crconst is fixed at 0.95. 
Note that although calculating the objective function values 
of the donor vector increases the number of FEs per 
generation, as will be evident from the experimental results, 
the proposed adaptation scheme is still very much 
competitive against the latest and best known DE-variants, 
when all the algorithms are run for same maximum number 
of FEs. The adaptation scheme of F and Cr has been applied 
to the DE/best/1/bin algorithm and in what follows, we shall 
refer to this new DE-variant as FiADE (Fitness-Adaptive 
DE) 

 
              V. EXPERIMENTAL SET UP AND RESULTS 

 The sample problems on which the proposed algorithm 
(FiADE) is compared with other existing algorithms and a 
brief introduction of those algorithms is presented below. 

 
A. Algorithms compared 
 
The different algorithms with which the proposed 

algorithm has been compared are as follows: 

1. DE/best/1/bin (DE) 
2. Genetic Algorithm (GA) 
3. Tabu Search Algorithm (TSA) 
4. Particle Swarm Optimization Algorithm (PSO) 
5. Memetic Algorithm (MA) 

For the competitor algorithms PSO, GA, MA, and TSA, we 
used the best possible parametric setup as explained in the 
relevant literatures [5, 16]. Both DE/rand/1/bin and FiADE 
starts with same population with 50 vectors for each run on 
each problem. This is done to make the comparison fair 
enough, i.e. any difference in performance between FiADE  
and DE/rand/1/bin may be attributed to their internal search 
operators only. DE/rand/1/bin uses F = 0.8 and Cr = 0.9 over 
all tested problem instances. 
 
B. Problem 1 

 
In the first example a 12 element array is  to be designed so 
that it has minimum side lobe level (SLL) in the band 
[0o,82o] and [98o,180o] and having no null direction. 
Following Figure 3 shows the Gain vs. Azimuth angle plot 
for this problem. 

Table 1 shows the position coordinates of the array 
elements (normalized with respect to 

! 

" / 2  ). Table 2 shows 
the mean objective function values and standard deviation 
obtained by different optimization techniques. A 
nonparametric statistical test called Wilcoxon’s rank sum 
test  (with 5% significance level) for independent samples 
has been done to check whether the final result obtained by 
the proposed algorithm differ in a statistically significant 
way from the result obtained by other competiting 
algorithms.  P values obtained through the rank sum test 
between the best algorithm and each of the contestants over 
all the unconstrained problem instances are presented in the 
3rd row of Table 2. Here NA stands for “Not Applicable” and 
occurs for the best performing algorithm itself in each case. 
The values corresponding to statistically insignificant value 
are marked bold. Here if P values are less than 0.05(5% 
significance level) then it is a strong proof against null 
hypothesis indicating that better final objective function 
values obtained by the best Algorithm I statistically 
significant and has not occurred by chance.  

Table 2 also contains the maximum SLL values obtained 
by different algorithms. SLLmax is minimum for FiADE 
indicating that null suppression has been done best by 
FiADE. The directivity has also been calculated in decibel 
(db) for various algorithms and those values are listed in 
table 2. The directivity is defined as the ratio of the radiation 
intensity in a given direction to the antenna to radiation 
intensity averaged over all direction. Higher value of 
directivity indicates that the antenna radiates energy more in 
certain direction over the other. So in this problem higher 
value of directivity is desirable. Directivity obtained by the 
algorithm FiADE is maximum. So FiADE performs better in 
this case over the other considered algorithms. 
 



 
 

 

  
 

TABLE 1: GEOMETRY OF THE 12 ELEMENT LINEAR ARRAY NORMALIZED WITH RESPECT TO  (MEDIAN SOLUTION OF 50 RUNS) 

 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3: 12 ELEMENT ARRAY FOR MINIMUM SLL IN BANDS 

! 

[ 0" ,82" ]  AND

! 

[ 98" ,180" ]AND NO NULLS 
 

 
 

TABLE 2: MEAN FINAL OBJECTIVE FUNCTION VALUE, STANDARD DEVIATION, P-VALUES FOR WILCOXON’S TEST, SLL AND DIRECTIVITY 

 
 
 
 
 
 
 
 

 
 
C. Problem 2 
 
In the second example a 22 element array is to be designed 
so that it has minimum side lobe level (SLL) in the bands 
[0o, 82o] and [98o,180o] and having  nulls at 81o and 99o. 
Following Figure 4 shows the Gain vs. Azimuth angle plot 
for this problem. From Fig. 4 it is evident that FiADE 
algorithm has produced the minimized SLL to the greatest 
extent. In addition to it, it also produces the minimum gain 
value at the desired null direction in comparison with the 
other algorithms. Table 3 contains the array element 
positions in the array obtained through different algorithms  
and Table 4 lists the mean objective function value, standard 
deviation, the P values obtained through Wilcoxon’s rank 

test and the maximum SLL and directivity.  
Here for the proposed algorithm (FiADE) P value appears as 
NA indicating that it is the best performing algorithm. The 
maximum SLL obtained by FiADE is also the minimum 
among all, which means that the null suppression has been 
done best by FiADE. The directivity obtained by FiADE is 
also maximum, which indicates that the radiation intensity in 
a given direction is maximum and the energy radiated in 
other direction is minimum. 
 
 
 

FiADE ±0.5110 ±1.2036 ±2.2486 ±3.1370 ±4.5307 ±5.9999 
DE/best/1/bin ±0.1327 ±1.3386 ±1.8480 ±2.9350 ±3.8348 ±5.1019 
GA ±0.5068 ±1.2611 ±2.2885 ±3.1910 ±4.5611 ±5.9998 
PSO ±0.2470 ±1.3109 ±1.9367 ±2.9717 ±3.9272 ±5.1808 
MA ±0.4819 ±1.2781 ±2.2881 ±3.2357 ±4.6025 ±5.9990 
TSA ±0.3881 ±1.2588 ±2.1076 ±3.0525 ±4.1881 ±5.4507 

Algorithm FiADE DE/best/1/bin GA TSA PSO MA 
Mean fitness 0.008720 0.010395 0.009061 0.011219 0.010843 0.009196 

Std. Dev. 0 0.000284 0.000681 0.000712 0.000319 0.000521 
P-values NA 1.1894e-10 2.2917e-10 1.3493e-11 3.9034e-13 1.3493e-16 

SLLmax(db) -13.1203 -9.1696 -12.5396 -9.6334 -10.9892 -8.0410 
Directivity(db) 20.0300 19.2668 19.9865 19.0554 19.2451 10.3722 



 
 

 

 
TABLE 3: GEOMETRY OF THE 22 ELEMENT LINEAR ARRAY NORMALIZED WITH RESPECT TO 

! 

" /2(MEDIAN SOLUTION OF 50 RUNS) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

FIGURE 4: 22 ELEMENT ARRAY FOR MINIMUM SLL IN BANDS (00,820) AND (980, 1800) WITH NULLS AT 810 AND 990

                                      
                        

                                                 
                       

TABLE 4: MEAN OBJECTIVE FUNCTION VALUE, STANDARD DEVIATION, P-VALUE FOR WILCOXON’S RANK-SUM TEST, SLL, DIRECTIVITY 
PERTAINING TO PROBLEM 2 

 

                
             
D. Problem 3 
 
In the third example a 26 elements array is to be designed 
so that it has minimum side lobe level (SLL) in the bands 
[0o, 80o] and [100o,180o] and having  nulls at 12o,60o,120o, 
and 1680. Following Figure 5 shows the Gain vs. Azimuth 
angle plot for this problem. Table 5 and 6 lists the mean 
objective function value, standard deviation and the P 
values obtained through Wilcoxon’s rank test. From the 
Fig. 5 and Table 5 and 6 it is evident not only FiADE 
produces the best mean objective function value, but also 

it produces the minimum SLL and minimum gain value at 
the desired null directions. FiADE also yields the 
statistically better final accuracy than all its competitors. 
The maximum SLL obtained by FiADE is also the 
minimum among all, which means that the null 
suppression has been done best by FiADE and the 
directivity obtained by FiADE is maximum compared to 
other algorithms. So, these results establish the superiority 
of the proposed algorithm FiADE. 

     

FiADE ±0.3634 ±1.0660 ±1.8542 ±2.5501 ±3.4666 ±4.2949 ±5.3570 ±6.3996 ±7.7696 ±9.4318 ±10.9011 
DE/best/1/bin ±0.0773 ±1.1668 ±1.7876 ±2.5822 ±3.3893 ±4.1471 ±5.2329 ±6.2659 ±7.6473 ±9.3065 ±10.8308 

GA ±0.0002 ±1.061 ±1.486 ±2.419 ±3.386 ±4.285 ±5.407 ±6.846 ±8.042 ±9.136 ±10.398 
TSA ±0.6982 ±1.071 ±2.485 ±2.541 ±4.148 ±5.479 ±6.480 ±7.573 ±8.714 ±10.211 ±11.64 
PSO ±0.3006 ±1.177 ±1.855 ±2.685 ±3.524 ±4.428 ±5.468 ±6.580 ±7.953 ±9.552 ±11.00 
MA ±0.8113 ±2.273 ±3.157 ±3.948 ±4.770 ±5.411 ±6.432 ±6.934 ±7.896 ±8.712 ±10.124 

Algorithms FiADE DE/best/1/bin GA TSA PSO MA 
Mean fitness 0.01065 0.011593 0.023662 0.021898 0.016755 0.021630 

Std. Dev. 0.001034 0.001248 0.001201 0.001109 0.001613 0.001331 
P-values NA 3.2547e-10 6.1304e-12 5.5647e-12 9.6808e-15 8.0040e-17 

SLLmax  (db) -23.8866 -21.5667 -14.6337 -20.6832 -17.2759 -23.5597 
Directivity(db) 24.4450 24.1729 20.9657 24.4188 21.3125 19.3764 



 
 

 

             
 

  TABLE 5: GEOMETRY OF THE 26 ELEMENT LINEAR ARRAY NORMALIZED WITH RESPECT TO (MEDIAN SOLUTION OF 50 RUNS) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

FIGURE 5: 26 ELEMENT ARRAY FOR MINIMUM SLL IN BANDS  

! 

[ 0" ,80" ]  AND 

! 

[100" ,180" ]   WITH NULLS AT

! 

81" ,

! 

99" , 

! 

120" ,

! 

168"  
 

                                                                        
TABLE 6: MEAN OBJECTIVE FUNCTION VALUE, STANDARD DEVIATION, P-VALUE FOR WILCOXON’S RANK TEST, SLL, AND DIRECTIVITY  

                             
 
 
 
 
 
 
 

 
 
 

 VI. CONCLUSIONS 
 
This paper illustrated the application of an improved 
adaptive DE-variant called FiADE in designing a non-
uniform linear antenna arrays having suppressed side lobes 
and efficient null control in certain direction. FiADE has 
successfully   found out the optimal array element location 
so that the array-pattern has either suppressed side lobe or 
null direction or both. Future research may focus on 
achieving more control of the array pattern using the FiADE 
algorithm to optimize not only the location, but also the 
excitation amplitude and phase of each element in the array, 
and exploring other array geometries.  

                  

 

 

 

ACKNOWLEDGEMENT 
This work was supported by the Czech Science Foundation 
under the grant no.102/09/1494. 

REFERENCES 
[1] Handbook of Antennas in Wireless Communications, 

L. C. Godara, Ed., CRC, Boca Raton, FL, 2002. 
[2] O.M. Bucci, D. D’Elia, G. Mazzarella, and G. 

Panatiello, Antenna pattern synthesis: A new 
general approach. Proc. IEEE, 82: 358-371, 1994. 

[3] Y. Rahmat-Samii and E. Michielssen Eds., 
Electromagnetic Optimization by Genetic 
Algorithms. New York: Wiley, 1999. 

[4] H. Lebret and S. Boyd, “Antenna array pattern 
synthesis via convex optimization,” IEEE 

FiADE ±0.429 ±1.038 ±1.835 ±2.632 ±3.322 ±3.986 ±4.781 ±5.303 ±6.328 ±6.918 ±7.950 ±8.725 ±9.907 
DE/best/1/bin ±3.156 ±4.462 ±5.011 ±5.834 ±6.332 ±6.836 ±7.932 ±8.053 ±8.553 ±9.106 ±9.943 ±10.44 ±11.69 
GA ±0.424 ±0.847 ±1.579 ±2.468 ±2.993 ±4.391 ±4.629 ±5.640 ±6.399 ±7.791 ±8.795 ±9.974 ±11.38 
PSO ±0.579 ±1.741 ±2.806 ±3.923 ±4.885 ±5.939 ±7.100 ±8.137 ±9.171 ±9.956 ±10.75 ±11.82 ±13.00 
TSA ±0.531 ±1.491 ±2.468 ±3.445 ±4.524 ±5.501 ±6.491 ±7.268 ±8.498 ±9.514 ±10.27 ±11.44 ±12.42 
MA ±0.452 ±0.851 ±1.606 ±2.497 ±3.019 ±4.397 ±4.629 ±5.687 ±6.399 ±7.792 ±8.796 ±9.976 ±11.40 

Algorithms FiADE DE/best/1/bin GA TSA PSO MA 
Mean fitness 0.0097 0.010556 0.050279 0.061428 0.048131 0.027195 

Std. Dev. 0.000567 0.000623 0.003163 0.008221 0.003331 0.001109 
P-Values NA 4.4826e-12 5.5647e-12 9.6808e-15 4.0040e-13 6.1304e-12 

SLLmax (db) -22.8599 -17.6550 -19.3634 -17.9091 -16.6816 -19.8770 
Directivity(db) 26.3671 18.0029 21.4904 21.4840 23.3009 22.2302 



 
 

 

Transactions on Signal Processing, Vol. 45, No. 3, 
March 1997. 

[5] M. M. Khodier and C. G. Christodoulou, “Linear 
array geometry synthesis with minimum side lobe 
level and null control using particle swarm 
optimization,” IEEE Transactions on Antennas and 
Propagation, Vol. 53, No. 8, August 2005. 

[6] J. H. Holland, Adaptation in Natural and Artificial 
Systems, University of Michigan Press, Ann 
Harbor, 1975. 

[7] T. Bäck, D. Fogel, Z. Michalewicz, Handbook of 
Evolutionary Computation, Oxford Univ. Press, 
1997. 

[8] A.E. Eiben and J.E. Smith, Introduction to 
Evolutionary Computing, Springer, 2003. 

[9] S. Kirkpatrik, C. Gelatt, and M. Vecchi, 
Optimization by Simulated Annealing. Science, 
220: 671–680, 1983. 

[10] F. Glover and M. Laguna, Tabu Search, Kluwer, 
Norwell, MA, 1997. 

[11] G. Taguchi, S. Chowdhury, and Y.Wu, Taguchi’s 
Quality Engineering Handbook. New York: Wiley, 
2005. 

[12] Y.-S. Ong, and A. J. Keane, “Meta-lamarckian 
learning in memetic algorithms,” IEEE 
Transactions on Evolutionary Computation, vol. 8, 
no. 2, pp. 99–110, 2004. 

[13] J. Kennedy and R. Eberhart, “Particle swarm 
optimization,” Proc. IEEE Int. conf. Neural 
Networks, pp.1942-1948, 1995. 

[14] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm 
Intelligence, Morgan Kaufmann, San Francisco, 
CA, 2001. 

[15] A. Udina, N. M. Martin, and L. C. Jain, “Linear 
antenna array optimization by genetic means,” 
Third International Conference on Knowledge-
Based Intelligent Information Engineering Systems 
Adelaide, Australia, Sept. 1999. 

[16] Y. Cengiz and H. Tokat, Linear Antenna Array 
Design With use of Genetic, Memetic and Tabu 
Search Optimization Algorithms, Progress In 
Electromagnetics Research (PIER) C, Vol. 1, 63–
72, 2008. 

[17] W-C. Weng, F. Yang, and A. Z. Elsherbeni, Linear 
Antenna Array Synthesis Using Taguchi’s Method: 
A Novel Optimization Technique in 
Electromagnetics, IEEE Transactions on Antennas 
and Propagation, Vol. 55, No. 3, pp. 723 – 730, 
March 2007. 

[18] F. J. Ares-Pena, A. Rodriguez-Gonzalez, E. 
Villanueva-Lopez, and S. R. Rengarajan, “Genetic 
algorithms in the design and optimization of 
antenna array patterns,” IEEE Transactions on 
Antennas and Propagation, vol. 47, pp. 506–510, 
Mar. 1999. 

[19] Y. B. Tian and J. Qian, “Improve the performance 
of a linear array by changing the spaces among 
array elements in terms of genetic algorithm,” IEEE 

Transactions on Antennas and Propagation., vol. 
53, pp. 2226–2230, Jul. 2005. 

[20] R. Storn and K. V. Price, “Differential Evolution - a 
simple and efficient adaptive scheme for global 
optimization over continuous spaces”, Technical 
Report TR-95-012,ICSI, 

[21] R. Storn and K. V. Price, “Minimizing the real 
functions of the ICEC 1996 contest by differential 
evolution”, Proceedings of the 1996 IEEE 
international conference on evolutionary 
computation, Nagoya, Japan, pp. 842–844. IEEE 
Press, New York, 1996 

[22] R. Storn and K. Price, “Differential evolution – A 
simple and efficient heuristic for global 
optimization over continuous spaces”, Journal of 
Global Optimization, 11(4) 341–359,1997 

[23] K. Price, R. Storn, and J. Lampinen, Differential 
evolution – A Practical Approach to Global 
Optimization, Springer, Berlin, 2005 

[24] J. Liu and J. Lampinen, “On setting the control 
parameters of the differential evolution method”, 
in: R. Matou!ek and P. O!mera, (eds.) Proc. of 
Mendel 2002, 8-th International Conference on Soft 
Computing, pp. 11–18, 2002 

[25] J. Liu and J. Lampinen, “Adaptive parameter 
control of differential evolution”, : R. Matou!ek 
and P. O!mera, (eds.) Proc. of Mendel 2002, 8-th 
International Conference on Soft Computing, pp. 
19–26, 2002. 

[26] J. Liu and J. Lampinen, “A Fuzzy adaptive 
differential evolution algorithm”, Soft computing- A 
Fusion of Foundations, Methodologies and 
Applications, Vol. 9, No. 6, pp. 448-462, 2005 

[27] J. Rönkkönen and J. Lampinen, “On using normally 
distributed mutation step length for the differential 
evolution algorithm”, 9th Int. Conf. Soft Computing 
(MENDEL 2003), Brno, Czech Republic, June 5-7, 
2002, pp. 11–18, 2003 

[28] A. K. Qin, V. L. Huang, and P. N. Suganthan, 
Differential evolution algorithm with strategy 
adaptation for global numerical optimization", 
IEEE Transactions on Evolutionary Computation, 
Vol. 13, Issue 2,, pp. 398-417, April, 2009. 

[29]   M. M. Ali and A. Törn, “Population set based 
global optimization algorithms: some modifications 
and numerical studies,” Computers and Operations 
Research, Elsevier, no. 31, pp. 1703–1725, 2004. 

[30] J. Brest, S. Greiner, B. Bo!kovi", M. Mernik, and 
V. #umer, “Self-adapting Control parameters in 
differential evolution: a comparative study on 
numerical benchmark problems,” IEEE 
Transactions on Evolutionary Computation, Vol. 
10, Issue 6, pp. 646 – 657, 2006 

[31] B.D. Van Veen, and K.M. Buckley, “Beamforming: 
A versatile approach to spatial filtering”, IEEE 
Acoust, Speech Signal Process. Mag.    5, 4-24, 
1988. 


