
10

Efficient Batch Job Scheduling in Grids Using
Cellular Memetic Algorithms

Fatos Xhafa1, Enrique Alba2, Bernabé Dorronsoro3, Bernat Duran1,
and Ajith Abraham3

1 Dept. de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya
C/Jordi Girona 1-3, 08034 Barcelona, Spain
fatos@lsi.upc.edu

2 Dpto. de Lenguajes y Ciencias de la Computación
E.T.S.I. Informática, Campus de Teatinos
29071 Málaga, Spain
eat@lcc.uma.es

3 Faculty of Science, Technology and Communication University of Luxembourg
6, rue Richard Coudenhove-Kalergi L-1359 Luxembourg
bernabe.dorronsoro@uni.lu

4 Centre for Quantifiable Quality of Service in Communication Systems, Norwegian
University of Science and Technology, NO-7491 Trondheim, Norway
ajith.abraham@ieee.org
http://www.softcomputing.net

Summary. Due to the complex nature of Grid systems, the design of efficient Grid
schedulers is challenging since such schedulers have to be able to optimize many con-
flicting criteria in very short periods of time. This problem has been tackled in the
literature by several different meta-heuristics, and our main focus in this work is to
develop a new highly competitive technique with respect to the existing ones. For
that, we exploit the capabilities of Cellular Memetic Algorithms, a kind of Memetic
Algorithm with structured population, for obtaining efficient batch schedulers for Grid
systems, and the resulting scheduler is experimentally tested through a Grid simulator.

Keywords: Cellular Memetic Algorithms, Job Scheduling, Grid Computing, ETC
model, Makespan, Dynamic computing environment, Simulation.

10.1 Introduction

One of the main motivations of the Grid computing paradigm has been the com-
putational need for solving many complex problems from science, engineering,
and business such as hard combinatorial optimization problems, protein folding,
financial modelling, etc. [19,21,22]. One key issue in Computational Grids is the
allocation of jobs (applications) to Grid resources. The resource allocation prob-
lem is known to be computationally hard as it is a generalization of the standard
scheduling problem. Some of the features of the Computational Grids that make

F. Xhafa, A. Abraham (Eds.): Meta. for Sched. in Distri. Comp. Envi., SCI 146, pp. 273–299, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

274 F. Xhafaet et al.

the problem challenging are the high degree of heterogeneity of resources, their
connection with heterogenous networks, the high degree of dynamics, the large
scale of the problem regarding number of jobs and resources, and other features
related to existing local schedulers, policies on resources, etc. (see Chapter 1,
this volume).

Meta-heuristic approaches have shown their effectiveness for a wide variety of
hard combinatorial problems and also for multi-objective optimization problems.
In this work we address the use of Cellular Memetic Algorithms (cMAs) [3, 4,
5, 6, 16] for efficiently scheduling jobs to Grid resources. cMAs are population-
based algorithms that maintain a structured population as opposed to GAs or
MAs of unstructured population. Research on cMAs has shown that, due to
the structured population, this family of algorithms is able to better control
the tradeoff between the exploitation and exploration of the solution space with
respect to other non-structured algorithms [3, 4, 5]. It should be noted that this
feature is very important if high quality solutions are to be found in a very short
time. This is precisely the case of the job scheduling in Computational Grids
whose highly dynamic nature makes indispensable the use of schedulers that
would be able to deliver high quality planning of jobs to resources very fast in
order to deal with the changes of the Grid. On the other hand, population-based
heuristics are potentially good also for solving complex problems in the long run
providing, for many problems, near optimal solutions. This is another interesting
feature to explore regarding the use of cMAs for the job scheduling problem.
The evidence reported in the literature that cMAs are capable to maintain a
high diversity of the population in many generations suggests that cMAs could
be appropriate for scheduling jobs that periodically arrive in the Grid system
since in this case the Grid scheduler would dispose longer intervals of time to
compute the planning of jobs to Grid resources. Finally, cMAs are used here to
solve the bi-objective case of the job scheduling, namely makespan and flowtime
are simultaneously optimized.

Many different cMA configurations have been developed and compared in this
study on a benchmark of static instances of the problem (proposed by Braun et
al. [9]). After that, we have also studied the behavior of the best obtained con-
figuration in a more realistic benchmark of dynamic instances. Our algorithms
will be validated by comparing the obtained results versus other results in the
literature for the same studied benchmarks (both the static and the dynamic
ones). Moreover, we studied the robustness of our cMA implementation since
robustness is a desired property of Grid schedulers, which are very changing in
nature. Because the cMA scheduler is able to deliver very high quality planning
of jobs to Grid nodes, it can be used to design efficient dynamic schedulers for
real Grid systems. Such dynamic schedulers are obtained by running the cMA-
based scheduler in batch mode for a very short time to schedule jobs arriving in
the systems since the last activation of the cMA scheduler.

This chapter is organized as follows. We give in Section 10.2 a description of
the job scheduling in computational grids. The cMAs and their particularization
for job scheduling in Grids together with the tuning process for the values of

10 Efficient Batch Job Scheduling in Grids Using cMAs 275

the parameters of the algorithm are given in Section 10.3. Some computational
results as well as their evaluation for a benchmark of static instances are pre-
sented in Section 10.4. In Section 10.5, the best of the tested cMA configurations
are evaluated in the more realistic case of dynamic instances, and the results are
compared versus those of other algorithms found in the literature. Finally, we
end in Section 10.7 with some conclusions.

10.2 The Batch Job Scheduling on Grids

In this work we consider the version of the problem1 that arises quite frequen-
tly in parameter sweep applications, such as Monte-Carlo simulations [11]. In
these applications, many jobs with almost no interdependencies are generated
and submitted to the Grid system. In fact, more generally, the scenario in which
the submission of independent jobs to a Grid system is quite natural given that
Grid users independently submit their jobs or applications to the Grid system
and expect an efficient allocation of their jobs/applications. We notice that the
efficiency means that we are interested to allocate jobs as fast as possible and
to optimize two conflicting criteria: makespan and flowtime.

In our scenario, jobs are originated from different users/applications, have
to be completed in unique resource unless it drops from the Grid due to its
dynamic environment (non-preemptive mode), are independent of each other and
could have their hardware and/or software requirements over resources. On the
other hand, resources could dynamically be added/dropped from the Grid, can
process one job at a time, and have their own computing characteristics regarding
consistency of computing. More precisely, assuming that the computing time
needed to perform a task is known (assumption that is usually made in the
literature [9, 15, 18]), we use the Expected Time to Compute (ETC) model by
Braun et al. [9] to formalize the instance definition of the problem as follows:

• A number of independent (user/application) jobs to be scheduled.
• A number of heterogeneous machines candidates to participate in the plan-

ning.
• The workload of each job (in millions of instructions).
• The computing capacity of each machine (in mips).
• Ready time readym indicates when machine m will have finished the previ-

ously assigned jobs.
• The Expected Time to Compute (ETC) matrix (nb jobs×nb machines) in

which ETC[i][j] is the expected execution time of job i in machine j.

10.2.1 Optimization Criteria

We consider the job scheduling as a bi-objective optimization problem, in which
both makespan and flowtime are simultaneously minimized. These criteria are
defined as follows:
1 The problem description and simultaneous optimization criteria are given in

Chapter 1 and are reproduced here for completeness.

276 F. Xhafaet et al.

• Makespan (the finishing time of latest job) defined as minS max{Fj : j ∈
Jobs},

• Flowtime (the sum of finishing times of jobs), that is, minS

∑
j∈Jobs Fj ,

where Fj is the finishing time of job j in schedule S.
For a given schedule, it is quite useful to define the completion time of a ma-

chine, which indicates the time in which the machine will finalize the processing
of the previous assigned jobs as well as of those already planned for the machine.
Formally, for a machine m and a schedule S, the completion time of m is defined
as follows:

completion[m] = readym +
∑

j∈S−1(m)

ETC[j][m] . (10.1)

We can then use the values of completion times to compute the makespan as
follows:

min
S

max{completion[i] | i ∈ Machines′} . (10.2)

In order to deal with the simultaneous optimization of the two objectives we
have used a simple weighted sum function of makespan and flowtime, which
is possible since both parameters are measured in the same unit (time units).
This way of tackling multiobjective optimization problems is widely accepted in
the literature [12, 13], and its drawbacks are well known: only a single solution
from the Pareto front (a set containing the best non-dominated solutions to the
problem) is found in each run, and only solutions located in the convex region of
the Pareto front will be found. However, the use of a weighted function is justified
in our case by the convex search space of the considered problem and also by
the need of providing a unique solution to the grid system, since there is not any
decision maker to select the most suitable solution from a set of non-dominated
ones.

The makespan and flowtime values are in incomparable ranges, since flowtime
has a higher magnitude order over makespan, and its difference increases with the
number of jobs and machines to be considered. For this reason, the value of mean
flowtime, flowtime/nb machines, is used instead of flowtime. Additionally, both
values are weighted in order to balance their importance. Fitness value is thus
calculated as:

fitness = λ · makespan + (1 − λ) · mean flowtime , (10.3)

where λ has been a priori fixed after a preliminary tuning process to the value
λ = 0.75 for the studies made in this work. Hence, we are considering in this
work the makespan as the most important objective to optimize, while we give
less importance to the total flowtime obtained in our solutions.

10 Efficient Batch Job Scheduling in Grids Using cMAs 277

10.3 A cMA for Resource Allocation in Grid Systems

We present in this section a description of the cMA we are proposing in this
work (Section 10.3.1) and its application to the batch job scheduling problem
(Section 10.3.2).

10.3.1 Cellular Memetic Algorithms

In Memetic Algorithms (MAs) the population of individuals could be unstruc-
tured or structured. In the former, there is no relation between the individuals of
the population while in the latter individuals can be related to only some other
specific individuals of the population. The structured MAs are usually classified
into coarse-grained model and fine-grained (Cellular MAs) model [4,5,6,16]. In
Cellular MAs the individuals of the population are spatially distributed forming
neighborhoods and the evolutionary operators are applied to neighbor individu-
als making thus cMAs a new family of evolutionary algorithms. As in the case of
other evolutionary algorithms, cMAs are high level algorithms whose description
is independent of the problem being solved. Thus, for the purposes of this work,
we have considered the cMA template given in Algorithm 10.1.

As it can be seen, this template is quite different from the canonical cGA ap-
proximation [4,5], in which individuals are updated in a given order by applying
the recombination operator to the two parents and the mutation operator to the
obtained offspring. In the case of the proposed algorithm in this work, mutation
and recombination operators are applied to individuals independently of each
other, and in different orders. This model was adopted after a previous experi-
mentation, in which it performed better than the cMA following the canonical
model for the studied problems. After each recombination (or mutation), a local
search step is applied to the newly obtained solution, which is then evaluated.
If this new solution is better than the current one, it replaces the latter in the
population. This process is repeated until a termination condition is met.

10.3.2 Application of the cMA to job Scheduling

Given the generic template showed in Algorithm 10.1, we proceed in this sec-
tion to define the different parameters and operators we will use for solving the
problem of batch job scheduling in grids. In order to efficiently solve the prob-
lem, we have to particularize the template with operators incorporating some
specific knowledge of the problem at hand. The objective is to design an efficient
algorithm for optimizing the QoS and productivity of grid systems. For that,
we will use genetic operators focussed in balancing the load of all the available
machines, and taking into account the presence of heterogeneous computers. We
give next the description of the cMA particularization for job scheduling.

Regarding the problem representation, a feasible solution, schedule, is con-
sidered as a vector of size the number of jobs (nb jobs) in which its jth
position (an integer value) indicates the machine where job j is assigned:
schedule[j] = m, m ∈ {1, . . . , nb machines}.

278 F. Xhafaet et al.

Algorithm 10.1. A Cellular MA template
Initialize the mesh of n individuals P(t=0);
Initialize permutations rec order and mut order ;
For each i ∈ P , LocalSearch(i);
Evaluate(P);
while not stopping condition do

for j = 1 . . .#recombinations do
SelectToRecombine S ⊆ NP [rec order.current];
i′ = Recombine(S);
LocalSearch(i′); Evaluate(i′);
Replace P [rec order.current] by i′;
rec order.next();

end for
for j = 1 . . .#mutations do

i = P [mut order.current()];
i′ = Mutate(i);
LocalSearch(i′); Evaluate(i′);
Replace P [rec order.current] by i′;
rec order.next();

end for
Update rec order and mut order ;

end while

As it can be seen in Algorithm 10.1, many parameters are involved in the
cMA template. Tuning these parameters is a crucial step in order to achieve a
good performance, since they influence in a straightforward way on the search
process. The tuning process was done by using randomly generated instances of
the problem according to the ETC matrix model. This way we would expect a
robust performance of our cMA implementation since no specific instance knowl-
edge is used in fixing the values of the parameters. An extensive experimental
study was done in order to identify the best configuration for the cMA. Thus, we
experimentally studied the choice of the local search method, the neighborhood
pattern, the selection, recombination and mutation operators, and the cell up-
date orders. The tuning process was made step by step, starting from an initial
configuration set by hand, and adding in each step the tuned parameters of the
previous ones. We give in Figs. 10.2 to 10.8 the graphical representation for the
makespan reduction of the cMA with the considered parameters. The results are
obtained after making 20 independent runs in standard configuration computer.

Population’s topology and neighborhood structure

Both the topology of the population and the neighborhood pattern are very
important parameters in deciding the selective pressure of the algorithm and,
therefore, they have a direct influence on the tradeoff between exploration and
exploitation of the algorithm [2, 7]. The topology of the population is a two-
dimensional toroidal grid of pop height × pop width size. Regarding the neigh-
borhood patterns, several well-known patterns are used for this work: L5 (5
individuals), L9 (9 individuals), C9 (9 individuals) and C13 (13 individuals)
(see Fig. 10.1). Additionally, in our quest for efficiency, we have considered the
case in which the neighborhood is equal to the whole population, so an indi-
vidual can interact with any other one in the population. Using this boundary

10 Efficient Batch Job Scheduling in Grids Using cMAs 279

Whole Pop. L5 (5 ind.) L9 (9 ind.) C9 (9 ind.) C13 (13 ind.)

Fig. 10.1. Neighborhood patterns

neighborhood we remove a typical feature of cellular populations from our cMA,
namely, the isolation by distance. The pursued effect is to accelerate the conver-
gence of the algorithm up to the limit in order to check if it is profitable for the
cMA.

We study in Fig. 10.2 the effects of using the different neighborhood structures
previously proposed in our cMA in order to identify the pattern that leads to
the best performance for the job scheduling problem. As it can be seen, we
obtain from this study that the obtained makespan worsens when increasing
the radius of the neighborhood (refer to [7] for a definition of the neighborhood
radius). Among the tested neighborhoods, L5 and C9 (those with the smallest
radii) perform the best exploration/exploitation tradeoffs of the algorithm for
this problem. Between them, we can see that L5 yields a very fast reduction,
although C9 performs better in the “long run” (see Fig. 10.2).

Finally, the case of considering the whole population as the neighborhood
throws the worst performance (slowest convergence) of the algorithm. This is
probably because the diversity in the population is quickly lost and thus the
speed of the population evolution becomes very slow.

7700000

7800000

7900000

8000000

8100000

8200000

8300000

8400000

8500000

0 10 20 30 40 50 60 70 80 90

Execution time (sec.)

M
a

k
e

s
p

a
n

Panmictic

L5

L9

C9

C13

Whole Pop.

Fig. 10.2. Makespan reduction obtained with different neighborhood patterns
(Makespan values are in arbitrary time units)

280 F. Xhafaet et al.

Population initialization

In this work we make use of some problem knowledge for creating the initial pop-
ulation of individuals. This way, one individual is generated using the Longest
Job to Fastest Resource - Shortest Job to Fastest Resource (LJFR-SJFR) heuris-
tic [1], while the rest are randomly obtained from the first individual by large
perturbations. The LJFR-SJFR method has been chosen because it tries to
simultaneously minimize both makespan and flowtime. LJFR minimizes the
makespan and it is alternated with the SJFR which minimizes the flowtime. The
method starts by increasingly sorting jobs with respect to their workload. At the
beginning, the first nb machines longest jobs are assigned to the nb machines
idle machines (the longest job to the fastest machine and so on). For the remain-
ing jobs, at each step the fastest machine (that has finished its jobs) is chosen
to which is assigned alternatively either the shortest job (SJFR) or the longest
job (LJFR).

Cell updating

Unlike many unstructured MAs, in cMAs the population is kept constant by
applying cell updating mechanisms by which an individual of the population
is updated with a new offspring obtained by either recombination or mutation
process (see later for the definition of these two operators). Two well-known
methods of cell updating are the synchronous and asynchronous updating. For
the purpose of this work, we have considered the asynchronous updating since
it is less computationally expensive and usually shows a good performance in
a very short time [8], which is interesting for the scheduling problem given the
dynamic nature of Grid systems. In the asynchronous mode, cell updating is
done sequentially (an individual is aware of other neighbor individual updates
during the same iteration). The following asynchronous mechanisms have been
implemented and experimentally studied for our job scheduling problem:

• Fixed Line Sweep (FLS): The individuals of the grid are updated in a
sequential order row by row.

• Fixed Random Sweep (FRS): The sequence of cell updates is at random.
This sequence is defined at the beginning of the algorithm and it is the same
during all the cMA iterations.

• New Random Sweep (NRS): At each iteration, a new cell update se-
quence (at random) is applied.

It should be noted that recombination and mutation are independent processes
in our cMAs (cf. rec order and mut order in the cMAs template) and therefore
different update orders are used for them. Next, we study some different update
policies and probabilities for applying them for the recombination and mutation
steps.

In Fig. 10.3 we provide a study of the three proposed update policies for the
recombination operator applied with two different probabilities. As regards to the
cell updating for the recombination operator, the three considered mechanisms

10 Efficient Batch Job Scheduling in Grids Using cMAs 281

3150000

3200000

3250000

3300000

3350000

3400000

3450000

3500000

0 10 20 30 40 50 60 70 80 90

Execution time (sec.)

M
a

k
e

s
p

a
n

Equal FLS

Equal FRS

Equal NRS

Lower FLS

Lower FRS

Lower NRS

FRS (p =1.0)c

NRS (p =1.0)c

FLS (p =0.5)c

FRS (p =0.5)c

NRS (p =0.5)c

FLS (p =1.0)c

Fig. 10.3. Makespan reduction with different recombination orders and probabilities
(pc)

7750000

7850000

7950000

8050000

8150000

8250000

8350000

8450000

0 10 20 30 40 50 60 70 80 90

Execution time (sec.)

M
a
k
e
s
p

a
n

FLS

FRS

NRS

7750000

7850000

7950000

8050000

8150000

8250000

8350000

8450000

0 10 20 30 40 50 60 70 80 90

Execution time (sec.)

M
a
k
e
s
p

a
n

Equal FRS

Medium FRS

Low FRS

FRS (p =0.66)
m

FRS (p =0.33)
m

FRS (p =1.0)
m

Fig. 10.4. Makespan reduction obtained with different mutation orders –left– and
probabilities (pm) –right

performed similarly, the FLS being the best performer (see Fig. 10.3). For the
three update policies, the case of always recombining the individuals (pc = 1.0)
is advantageous versus applying the operator with probability pc = 0.5.

Regarding the mutation operator, it can be seen in Fig. 10.4 (left hand plot)
that, like in the case of the recombination operator, the three update policies
perform in a similar way, being FRS slightly better than the other two ones.
In the right hand plot of this same figure we study three different probabilities
of applying the mutation operator when using FRS. The main result that can
be drawn from this study is that the two lower probabilities (pm = 0.66 and
pm = 0.33) perform better than the highest one (pm = 1.0). When comparing
these two lowest probabilities between them, one can notice that the case pm =
0.33 converges faster, but after the 90 seconds allowed for the execution using
pm = 0.66 seems to be beneficial.

282 F. Xhafaet et al.

Selection operator for recombination

We have considered in this work the use of six different well-known selection
policies in our cMA, namely linear ranking (LR), N -tournament (Ntour) with
N = 2, 3, 5, and 7, and selecting the best individual in the neighborhood (Best).
The results of our experiments are given in Fig. 10.5. As it can be seen, the slow-
est convergence is given by both linear ranking and binary tournament (Ntour
with N = 2), although at the end of the run the makespan found using these
two selection methods is close to that of the other compared ones, for which the
convergence is faster at the beginning of the run, although its speed is drastically
slowed after a few seconds. From all the compared selection methods, the one
reporting the best makespan at the end of the run is Ntour with N = 3.

3100000

3150000

3200000

3250000

3300000

3350000

3400000

3450000

3500000

0 10 20 30 40 50 60 70 80 90

Execution time (sec.)

M
a

k
e

s
p

a
n

Best

LR

Binary

Ntour (3)

Ntour (5)

Ntour (7)

Ntour (2)

Fig. 10.5. Makespan reduction obtained with different selection methods

Recombination operator

Three recombination operators, very well known in the literature, were tested
in this study for tuning our cMA. They are the one-point (OP2), the uniform
(Uni2), and the fitness-based (FB2) recombination. The one-point operator lies
in splitting the two chromosomes into two parts (in a randomly selected point),
and joining each part of one parent chromosome with the other part of the
chromosome of the second parent. In the case of the uniform recombination, an
offspring is constructed by selecting for each gene the value of the corresponding
gene of one of the two parents with equal probability. Finally, in the case of
the fitness-based recombination both the structure and the relative fitness of the
two parents are taken into account. The offspring is obtained as follows. Let us
suppose that the two parents are P1 and P2, being P1[i] the ith gene of P1 and
fP1 its fitness. The offspring is noted as C. If the two parents have the same
value for a given gene i (P1[i] = P2[i]) this value is adopted for the same gene

10 Efficient Batch Job Scheduling in Grids Using cMAs 283

8000000

9000000

10000000

11000000

12000000

13000000

14000000

15000000

0 10 20 30 40 50 60 70 80 90

Execution time (sec.)

M
a

k
e

s
p

a
n

OP2

Uni2

FB2

Fig. 10.6. Makespan reduction obtained with different recombination operators

of the offspring C[i] = P1[i]. In other case, when P1[i] �= P2[i], C[i] = P1[i] with
probability p = fP2/(fP1 + fP2), while C[i] = P2[i] with probability 1 − p.

From the results showed in Fig. 10.6, the one-point method has been chosen
as the one reporting the best performance from the three compared recombina-
tion operators. The other two tested recombination operators (Uni2 and FB2)
perform in a similar way, and slightly worse than OP2.

Mutation operator

We have tested four different mutation operators in our cMA. They are move,
swap, both, and rebalance:

• Move is a simple operator that lies in changing the location of a given job
in the chromosome of the individual, i.e. it assigns the machine of job i to
job j.

• Swap exchanges the value of two genes. In our problem, this means that we
are exchanging the machines assigned to two different jobs.

• Both. In this case we are applying one of the two previously explained oper-
ators (move and swap) with equal probability.

• Rebalance. The mutation is done by rebalancing of machine loads of the given
schedule. The load factor of a machine m is defined as load factor(m) =
completion[m]/makespan (load factor(m) ∈ (0, 1]). The idea behind this
choice is that in a schedule, some machines could be overloaded (when its
completion time is equal to the current makespan –load factor(m) = 1–) and
some others less overloaded (regarding the overloaded machines, we sort the
machines in increasing order of their completion times and 25% first ma-
chines are considered less overloaded), in terms of their completion times. It
is useful then to mutate the schedule by a load balancing mechanism, which
transfers a job assigned to an overloaded machine to another less loaded
machine.

284 F. Xhafaet et al.

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

11000000

12000000

0 10 20 30 40 50 60 70 80 90

Execution time (sec.)

M
a

k
e

s
p

a
n

Move

Swap

Both (50%)

Rebalance (75%)

Fig. 10.7. Makespan reduction obtained with different mutation operators

Three of the studied mutation operators (move, swap, and both) are generic
ones, while rebalance was specifically designed for this problem. They all are
compared in Fig. 10.7. As it can be seen, the best performance is given by the
rebalance operator (the unique specific method of the studied ones). Comparing
the generic operators, swap is the worst one, and move is the best, being the
results obtained by both between they two.

Local search methods

Local search is a proper feature of Memetic Algorithms. As it can be seen from
the template of Algorithm 10.1, each individual is improved by a local search
both after being generated by the recombination operator and after being mu-
tated. Improvement of the descendants is thus done not only by means of genetic
information but also by local improvements. The presence of this local search
method in the algorithm does not increase selection pressure too much due to
the exploration capabilities intrinsic to the cellular model. Four local search
methods have been implemented and experimentally studied. These are the Lo-
cal Move (LM), Steepest Local Move (SLM), Local Minimum Completion Time
Swap (LMCTS), and Local Tabu Hop (LTH).

• LM is similar to the mutation operator (a randomly chosen job is transferred
to a new randomly chosen machine).

• In SLM method, the job transfer is done to the machine that yields the best
improvement in terms of the reduction of the completion time.

• In LMCTS method, two jobs assigned to different machines are swapped; the
pair of jobs that yields the best reduction in the completion time is applied.

• Local Tabu Hop is a local search method based on the Tabu Search
(TS) meta-heuristic. The main feature of TS [17] is that it maintains an

10 Efficient Batch Job Scheduling in Grids Using cMAs 285

8000000

10500000

13000000

15500000

18000000

20500000

23000000

25500000

0 10 20 30 40 50 60 70 80 90

Execution time (sec.)

M
a

k
e

s
p

a
n

LM

SLM

LMCTS

LTH

Fig. 10.8. Makespan reduction obtained with four local search methods

7600000

7700000

7800000

7900000

8000000

8100000

8200000

8300000

8400000

8500000

8600000

Execution time (sec.)

0 10 20 30 40 50 60 70 80 90

 5 iterations
10 iterations
15 iterations
25 iterations

M
a

k
e

s
p

a
n

Fig. 10.9. Makespan reduction obtained with different intensities of the local search
method

adaptive memory of forbidden (tabu) movements in order to avoid cycling
among already visited solutions and thus escape from local optimal solutions.
In the LTH algorithm for job scheduling, the implemented neighborhood re-
lationship is based on the idea of the load balancing. The neighborhood of
solutions consists of all those solutions to which we can reach via swap of
the tasks of an overloaded resource with those of the less overloaded ones, or
via move of tasks of an overloaded resource to the less overloaded resources.
LTH is essentially a phase of Tabu Search and is taken from the Tabu Search
implementation for the problem by Xhafa et al. [23].

In Fig. 10.8 we compare the behavior of our cMAs implementing the four
proposed local search methods. From that graphical representation we can easily
observe that the LMCTS method performs best among the four considered local

286 F. Xhafaet et al.

7650000

7700000

7750000

7800000

7850000

7900000

7950000

8000000

1 iteration
2 iterations
4 iterations
5 iterations

Execution time (sec.)

0 10 20 30 40 50 60 70 80 90

M
a

k
e

s
p

a
n

Fig. 10.10. Makespan reduction obtained with different maximum allowed iterations
of the local search method when the solution is not improved

search methods. In fact, a clear difference in the behavior of the considered local
search methods is observed, though all of them provide an accentuated reduction
in the makespan value (see Fig. 10.8).

The bad behavior of the cMA using LTH is probably because this local search
method is very heavy (computationally speaking) with respect to the other com-
pared ones, and also the termination condition of the cMA is very hard (only 90
seconds of execution). Thus, the cMA only has time for making a few genera-
tions before the termination condition is met. Hence, it should be interesting to
try some other parameters in order to reduce the number of LTH steps made by
cMA+LTH in each generation, what hopefully should lead us to better results.

We present in Fig. 10.9 a study of the influence of the number of iterations
of the LMCTS local search algorithm in the behavior of the cMA. Specifically,
we study the cases of performing 5, 10, 15, and 25 iterations. As it can be seen
in the figure, the smaller the number of iterations is the slower the convergence
of the algorithm, and also the better the resulting makespan. Hence, the use of
a strong local search provokes a premature convergence of the population, and
this fast lost of diversity induces a bad behavior into the algorithm.

Once the number of iterations of the local search step is set, there is still one
parameter to be tuned for the local search. This parameter is the number of
iterations of the local search to perform even if no improvements were obtained
in the previous ones. We present in Fig. 10.10 a study in which the cases of
performing 1, 2, 4, and 5 iterations without any improvement are analyzed (recall
that the maximum number of iterations was previously set to 5). From the results
shown in Fig. 10.10 we decided to set the number of iterations of the local search
to 5 even if no improvements are found.

Population Size and Shape and Replacement Policy

In this final step of our tuning procedure, we set the population size and shape as
well as the replacement policy that we will use in our experiments. We compare

10 Efficient Batch Job Scheduling in Grids Using cMAs 287

3100000

3150000

3200000

3250000

3300000

3350000

3400000

3450000

3500000

0 10 20 30 40 50 60 70 80 90

Rectangular (5x13)
Square (8x8)

Execution time (sec.)

M
a

k
e

s
p

a
n

Fig. 10.11. Makespan reduction obtained with two different population shapes

7650000

7700000

7750000

7800000

7850000

7900000

25 49 64

Ma
ke

sp
an

Population Size

add_only_if_better = false
add_only_if_better = true

Fig. 10.12. Makespan obtained with two different replacement methods and three
(square) population sizes

in Fig. 10.11 the behavior of our cMA with two populations of different shapes
but having approximately the same size. The reason for this study is that the
shape of the population markedly influences the behavior of the search in cellular
evolutionary algorithms [3, 2]. The populations compared in Fig. 10.11 are a
rectangular ones composed by 65 individuals arranged in a 5 × 13 mesh and a
square 8 × 8 individuals population. As it can be seen in the figure, the latter
performs better than the former for the studied instance.

We now study the influence of the replacement policy of new individuals
into the population. Specifically, we considered two different options, namely,
allowing that worse individuals can replace the current ones in the population
(add only if better = false) or not (add only if better = true). As it can be seen in

288 F. Xhafaet et al.

Fig. 10.12, we always obtained better (lower) makespan values when individuals
in the population can only be replaced by offsprings having better fitness values.

Additionally, we can see in Fig. 10.12 that the smallest of the three tested pop-
ulations was the one providing the best makespan value (the three populations
have square shape). The reason is that the use of a larger population allows to
maintain the diversity for longer, but as a consequence the convergence speed is
slowed down, so the algorithm generally requires a longer time to converge. This
property is desirable for very difficult problems and large computation times.
However, the computational time is fixed and very limited in our case of study,
so it is desirable to enhance the exploitation capabilities of our algorithm.

10.4 Computational Results on Static Instances

After tuning our cMA on a set of random instances of the problem according to
the ETC matrix model in Section 10.3.2, we present in this section some compu-
tational results obtained with our tuned cMAs for the benchmark of instances
by Braun et al. [9] for distributed heterogenous systems. This benchmark is de-
scribed in the next section, while the results of our algorithm are discussed and
compared versus those obtained by other algorithms in Section 10.4.2.

10.4.1 Benchmark Description

The instances of this benchmark are classified into 12 different types of ETC
matrices, each of them consisting of 100 instances, according to three parameters:
job heterogeneity, machine heterogeneity and consistency. Instances are labelled
as u x yyzz.k where:

• u stands for uniform distribution (used in generating the matrix).
• x stands for the type of consistency (c–consistent, i–inconsistent, and s

means semi-consistent). An ETC matrix is considered consistent when, if
a machine mi executes job j faster than machine mj , then mi executes all
the jobs faster than mj . Inconsistency means that a machine is faster for
some jobs and slower for some others. An ETC matrix is considered semi-
consistent if it contains a consistent sub-matrix.

• yy indicates the heterogeneity of the jobs (hi means high, and lo means low).
• zz indicates the heterogeneity of the resources (hi means high, and lo means

low).

Note that all instances consist of 512 jobs and 16 machines. We report com-
putational results for 12 instances, which are made up of three groups of four
instances each. These three groups represent different Grid scenarios regarding
the computing capacity. The first group corresponds to consistent ETC matri-
ces (for each of them combinations between low and high are considered), the
second represent instances of inconsistent computing capacity and the third one
to semi-consistent computing capacity.

10 Efficient Batch Job Scheduling in Grids Using cMAs 289

10.4.2 Evaluation and Discussion

In this section we present and discuss the results obtained by our algorithms,
and compare them versus some other algorithms in the literature. Specifically, we
propose two different cMAs: cMA+LMCTS and cMA+LTH. First, we compare
the results obtained with the two proposed cMAs. Since one of these versions
uses as a local search the Local Tabu Hop, we also compare the obtained results
with those obtained by Tabu Search implementation by Xhafa et al. [23]. The
algorithms run for 90 seconds (a single run) and 10 runs per instance are made.
These decisions are the same than those adopted for the compared algorithms
in order to make fair comparisons, since the compared results are directly taken
from the original papers.

Table 10.1. Parameterization of cMA+LMCTS

Termination condition Maximum of 90 seconds running
Population size 5×5
Probability of recombination pc = 1.0
Probability of mutation pm = 0.5
Population initialization LJFR-SJFR (Longest / Shortest Job to Fastest Resource)
Neighborhood pattern C9
Recombination order FLS (Fixed Line Sweep)
Mutation order NRS (New Random Sweep)
Selection method 3-Tournament
Recombination operator One-Point recombination
Mutation operator Rebalance
Local search method LMCTS (Local Minimum Completion Time Swap)
Number of iterations of the local search 5
Replacement policy Replace if better

The resulting configuration for cMA+LMCTS we decided to use after the
initial tuning step made in Section 10.3.2 is given in Table 10.1. The parameteri-
zations for cMA+LTH is similar to the one shown in Table 10.1, but in this case
the population was set to 3 × 3 in order to reduce the number of local search
steps due to the high computational requirements of LTH (see Section 10.3.2).
Because of the small population used in this case, we adopt the L5 neighborhood
pattern for cMA+LTH.

We give in Table 10.2 the computational results2 for the makespan objec-
tive, where the first column indicates the name of the instance, and the other
three ones present the average makespan with standard deviation (in %) ob-
tained by the two proposed CMA algorithms (cMA+LMCTS and cMA+LTH)
and TS [23]. Again, the results are averaged over 10 independent runs of the
algorithms for every instance. The algorithm cMA+LMCTS provides the worst
results in terms of average makespan, while the other proposed cellular memetic
algorithm, cMA+LTH, is the best one for all the consistent instances, and it
is the best performing algorithm if we do not take into account the inconsis-
tent instances. This observation is interesting if the Grid characteristics were
known in advance, since cMA+LTH seems to be more appropriate for consistent
2 Values are in arbitrary time units.

290 F. Xhafaet et al.

Table 10.2. Comparison of the three proposed algorithms. Average makespan values.

Instance cMA+LMCTS TS cMA+LTH
u c hihi.0 7700929.751 ±0.73% 7690958.935 ±0.28% 7554119.350 ±0.47%
u c hilo.0 155334.805 ±0.13% 154874.145 ±0.41% 154057.577 ±0.10%
u c lohi.0 251360.202 ±0.62% 250534.874 ±0.59% 247421.276 ±0.47%
u c lolo.0 5218.18 ±0.30% 5198.430 ±0.52% 5184.787 ±0.07%
u i hihi.0 3186664.713 ±1.80% 3010245.600 ±0.26% 3054137.654 ±0.83%
u i hilo.0 75856.623 ±0.79% 74312.232 ±0.35% 75005.486 ±0.31%
u i lohi.0 110620.786 ±1.72% 103247.354 ±0.42% 106158.733 ±0.54%
u i lolo.0 2624.211 ±0.83% 2573.735 ±0.39% 2597.019 ±0.39%
u s hihi.0 4424540.894 ±0.85% 4318465.107 ±0.28% 4337494.586 ±0.71%
u s hilo.0 98283.742 ±0.47% 97201.014 ±0.56% 97426.208 ±0.21%
u s lohi.0 130014.529 ±1.11% 125933.775 ±0.38% 128216.071 ±0.83%
u s lolo.0 3522.099 ±0.55% 3503.044 ±1.52% 3488.296 ±0.19%

Table 10.3. Comparison versus other algorithms in the literature. Average makespan
values.

Instance Braun et al. GA GA Struggle GA cMA+LTH(Carretero&Xhafa) (Xhafa)
u c hihi.0 8050844.50 7700929.75 7752349.37 7554119.35
u c hilo.0 156249.20 155334.85 155571.80 154057.58
u c lohi.0 258756.77 251360.20 250550.86 247421.28
u c lolo.0 5272.25 5218.18 5240.14 5184.79
u i hihi.0 3104762.50 3186664.71 3080025.77 3054137.65
u i hilo.0 75816.13 75856.62 76307.90 75005.49
u i lohi.0 107500.72 110620.79 107294.23 106158.73
u i lolo.0 2614.39 2624.21 2610.23 2597.02
u s hihi.0 4566206.00 4424540.89 4371324.45 4337494.59
u s hilo.0 98519.40 98283.74 983334.64 97426.21
u s lohi.0 130616.53 130014.53 127762.53 128216.07
u s lolo.0 3583.44 3522.10 3539.43 3488.30

and semi-consistent Grid scenarios. Moreover, we consider that cMA+LTH is a
more robust algorithm with respect to TS because the standard deviation val-
ues of the results obtained by the former are lower than those of the latter, in
general.

We believe that it is possible to improve the results of cMA+LTH if we apply
longer steps of the LTH method. Additionally, as it happened in [4,5] for the case
of the satisfiability problem, we believe that the memetic algorithm (cMA+LTH)
should outperform the local search by itself (TS) for larger instances of the
problem. Moreover, it makes sense in our case to solve much larger instances of
the problem, since we are tackling grids composed by only 16 machines in this
preliminary study, and it is desirable to solve instances including hundreds or
even thousands of processors.

The comparison of our best cMA (cMA+LTH) with three other versions of
GAs taken from the literature is given in Table 10.3. Like in the case of Ta-
bles 10.2 and 10.3, values are the average makespan and standard deviation
obtained after 10 independent runs. The compared algorithms are the Braun et
al. GA [9], the GA by Carretero and Xhafa [10], the Struggle GA [26], and our
best memetic algorithm cMA+LTH. For all the compared algorithms, the termi-
nation condition is set to a 90 seconds runtime. As it can be seen, cMA+LTH is

10 Efficient Batch Job Scheduling in Grids Using cMAs 291

Table 10.4. Comparison versus other algorithms in the literature. Average flowtime
values.

Instance LJFR-SJFR Struggle GA TS cMA+LMCTS cMA+LTH(Xhafa)
u c hihi.0 2025822398.7 1039048563.0 1043010031.4 1037049914.2 1048630695.5
u c hilo.0 35565379.6 27620519.9 27634886.7 27487998.9 27684456.0
u c lohi.0 66300486.3 34566883.8 34641216.8 34454029.4 34812809.9
u c lolo.0 1175661.4 917647.31 919214.3 913976.2 922378.0
u i hihi.0 3665062510.4 379768078.0 357818309.3 361613627.3 370506405.1
u i hilo.0 41345273.2 12674329.1 12542316.2 12572126.6 12754803.6
u i lohi.0 118925453.0 13417596.7 12441857.7 12707611.5 12975406.6
u i lolo.0 1385846.2 440729.0 437956.9 439073.7 445529.3
u s hihi.0 2631459406.5 524874694.0 515743097.6 513769399.1 532276376.7
u s hilo.0 35745658.3 16372763.2 16385458.2 16300484.9 16628576.7
u s lohi.0 86390552.3 15639622.5 15255911.2 15179363.5 15863842.1
u s lolo.0 1389828.8 598332.7 597263.2 594666.0 605053.4

the best one of the four compared algorithms for all the studied instances, with
the exception of the semi-consistent instance with low heterogeneity of jobs and
high heterogeneity of the resources (u s lohi.0), for which cMA+LTH is the
second best algorithm, just after the Struggle GA.

Additionally, when comparing cMA+LMCTS against the three other versions
of GAs shown in Table 10.3 (Braun et al. GA, Carretero&Xhafa’s GA [10] and
Xhafa’s Struggle GA [26]), cMA+LMCTS obtains better schedules than the
compared GAs for half of the considered instances, and for the rest of the in-
stances, the solutions found by cMA+LMCTS have a similar quality than the
best of the other three GAs.

Computational results for flowtime parameter are given in Table 10.4 wherein
we compare the average flowtime value obtained after 10 independent runs by the
ad hoc heuristic LJFR-SJFR, the Xhafa’s Struggle GA [26], Xhafa et al. TS [23]
and the two cMAs proposed in this work. As it can be seen, the improvement
made by the two cMAs on the initially constructed solution (obtained by the
LJFR-SJFR heuristic) is very important. Additionally, it is noticeable in this ta-
ble the improvement obtained by cMA+LMCTS over the compared algorithms,
since it outperforms the compared algorithms for all considered instances. The
exception are the inconsistent instances, for which the TS algorithm is the best
one. The other proposed cMA, cMA+LTH, which obtained the best results for
the makespan value is worse than both cMA+LMCTS and the Struggle GA for
the flowtime objective.

10.5 Computational Results on Dynamic Instances

The study made in Section 10.4 using static instances for the problem of resource
allocation in grids allowed us to better know the behavior of the cMAs, showing
their main differences in the resolution of the problem and the results we could
expect from them for several different cases. However, even if we can define static
instances with really complex features, we still need to analyze the behavior of

292 F. Xhafaet et al.

the algorithms in a more realistic dynamic grid system environment. In this case,
the algorithm typically has to schedule the tasks in very short time intervals, and
in a dynamic scenario that is continuously changing with time (resources that
join and leave the Grid system). Thus, we study in this section the behavior of
our algorithms in a more realistic set of dynamic instances. These instances are
obtained using a simulator of a grid environment proposed in [24] that allows
us to simulate different grid environments with distinct parameterizations. This
simulator is briefly described in Section 10.5.1.

10.5.1 Dynamic Grid Simulator

The dynamic grid simulator was built from the Hypersim [20] framework, which
is at the same time based in the simulation of systems of discrete events. The
dynamic grid simulator allows us to emulate a set of dynamic resources that
appear and disappear along time simulating resources that are registered and
unregistered in grids. These simulated resources have different computing capac-
ities (by means of number of instructions per time unit), and there is no limit on
the number of tasks that can be assigned to a given resource. Moreover, every
resource could have its own local scheduling policy.

New tasks arrive to the system following different distributions. The modelled
tasks have intensive computing requirements, and they differ each other only in
the work load (number of instructions). Tasks are considered to be sequential
and have no dependencies on the other ones, so they are not restricted by the
order in which they are executed, and no communication is needed among them.
Hence, tasks are run in one single resource, and cannot be interrupted unless
there is some error during the run. The scheduling process of these tasks is
centralized, allowing to compare the scheduling algorithms easier than in the case
of a decentralized system, since in this case the result of the scheduling is highly
dependent on the the structure defined by the schedulers. The design of this
simulator allows to easily adapt different scheduling policies, and it offers already
implemented some scheduling policies. Anyway, the simulator is compatible both
with static and dynamic schedulers.

The scheduler in our simulated grid is dynamically adapted to the evolution
of the grid through the re-scheduling of the tasks either with a given frequency
or when a change in the grid resources is made. As it could be expected from a
scheduler of a real grid. In our simulator (at least in the version we are using in
this work), no possible dependencies are considered between tasks and resources,
so tasks can be run in any resource, and the computation time depends on both
the length of the task and the resource capacity.

Finally, this simulator provides a configurable environment that allows the
user to define different grid scenarios simply by changing some parameters. The
simulator provides a large number of statistical measures that allows the user to
evaluate and compare different schedulers, as well as the influence of the different
parameter values.

10 Efficient Batch Job Scheduling in Grids Using cMAs 293

10.5.2 Dynamic Benchmark Description

In this section, we present the parametrization used for the simulator described
in Section 10.5.1 in order to define the benchmark for testing our schedulers.
This parametrization have been carefully set in order to have different kinds of
real grids. This way, we have defined grids of different (random) sizes, that we
have enclosed in four different sets called small, medium, large, and very large,
having the resources composing these grids random computing capacities. The
details on the parametrization of the used simulator are given in Table 10.5, and
the meaning of every parameter in the table is explained next:

• Init. hosts : Number of resources initially in the environment.
• Max. hosts : Maximum number of resources in the grid system.
• Min. hosts : Minimum number of resources in the grid system.
• MIPS : Normal distribution modelling computing capacity of resources.
• Add host : Normal distribution modelling the frequency of new resources

being added to the system.
• Delete host : Normal distribution modelling the frequency of resources being

dropped from the system.
• Total tasks : Number of tasks to be scheduled.
• Init. tasks : Initial number of tasks in the system to be scheduled.
• Workload : Normal distribution modelling the workload of tasks.
• Interarrival : Frequency (given by an exponential distribution) of new tasks

arriving to the system (it is ensured that each time the simulator is activated,
there will be at least one new task per resource).

• Activation: Establishes the activation policy according to an exponential
distribution.

• Reschedule: When the scheduler is activated, this parameter indicates
whether the already assigned tasks, which have not yet started their exe-
cution, will be rescheduled.

Table 10.5. Settings for the dynamic grid simulator

Small Medium Large Very Large
Init. hosts 32 64 128 256
Max. hosts 37 70 135 264
Min. hosts 27 58 121 248
MIPS N(1000, 175)∗

Add host N(625000, 93750) N(562500, 84375) N(500000, 75000) N(437500, 65625)
Delete host N(625000, 93750)
Total tasks 512 1024 2048 4096
Init. tasks 384 768 1536 3072
Workload N(2.5 ∗ 108, 4.375 ∗ 107)
Interarrival E(7812.5)† E(3906.25) E(1953.125) E(976.5625)
Activation Resource and time interval(250000)
Reschedule True
Host select All
Task select All
Number of runs 15
∗N(μ, σ) is a uniform distribution with average value μ and standard deviation σ.
†E(μ) is an exponential distribution an average value μ.

294 F. Xhafaet et al.

• Host selection: Selection policy of resources (all means that all resources of
the system are selected for scheduling purposes).

• Task selection: Selection policy of tasks (all means that all tasks in the
system must be scheduled).

• Number runs : Number of simulations done with the same parameters. Re-
ported results are then averaged over this number.

As it can be seen in Table 10.5, we have defined four different grid sizes for
our studies. Small grids are composed of a maximum of 37 hosts and a minimum
of 27. The initial value is set to 32 and then it dynamically changes in that
interval. When the simulation starts, 384 tasks must be scheduled, and new
tasks arrive along time until a total of 512 ones. Medium grids are composed
by a number of hosts in the interval [58, 70], starting with 64, and the total
number of tasks is 1024 (being 768 at the beginning of the simulation). The
large grids are considered to have between 121 and 135 hosts (128 initially) and
a number of 2048 tasks (starting from 1536). Finally, the largest grids studied in
this section are composed by an average of 256 hosts (varying this value in the
interval [248, 264]), and the number of tasks to schedule grows from 3072 (initial
fixed value) up to 4096. In all the configurations, the computing capacity of
resources, their frequency of appearing and disappearing, the length of tasks and
their arrival frequency are randomly set parameters (with values in the specified
intervals). In the rescheduling process, all non executed tasks are considered even
if they were previously scheduled.

10.6 Evaluation and Discussion

We proceed in this section to evaluate our schedulers in the dynamic benchmark
previously defined. In order to make more realistic simulations, we have reduced
the run time for the algorithm from 90 to 25 seconds, and we run the algorithm
in a a Pentium IV 3.5GHz with 1GB RAM under windows XP operating system
without any other process in background. The parametrization of the algorithm
is shown in Table 10.6. As it can be seen, there are some small differences between
this configuration and the one used in Section 10.4. These changes were made
in order to promote the exploration capabilities of the algorithm for this set of
more complex instances, and improve its answer to the instance changes. Thus,
we have increased the population size to 6 × 6 (instead of 5 × 5) for solving all
the instances except the small ones, the neighborhood is changed to L5 instead
of C9, and we also improved the generation of the initial population. In the
case of Section 10.4, this was made by generating one first individual using the
LJFR-SJFR method, and the other individuals of the population were obtained
after applying strong mutations to this initial individual. In this case, two initial
individuals are generated instead of one: one with LJFR-SJFR, and the other
one using the minimum completion time method (MCT). Then, the rest of the
population is generated by mutating one of these two initial individuals (selected
with equal probability).

10 Efficient Batch Job Scheduling in Grids Using cMAs 295

Table 10.6. Parameterization of cMA+LMCTS for the dynamic benchmark

Termination condition 25 seconds run or 2 × nb tasks generations
Population size 5×5 (small grids)

6×6 (medium, large, and very large grids)
Probability of recombination pc = 1.0
Probability of mutation pm = 0.5
Population initialization MCT and LJFR-SJFR
Neighborhood pattern L5
Recombination order FLS (Fixed Line Sweep)
Mutation order NRS (New Random Sweep)
Selection method 3-Tournament
Recombination operator One-Point recombination
Mutation operator Rebalance
Local search method LMCTS
Number of iterations of the local search 5
Replacement policy Replace if better

The MCT method assigns a job to the machine yielding the earliest completion
time (the ready times of the machines are used). When a job arrives in the sys-
tem, all available resources are examined to determine the resource that yields the
smallest completion time for the job (note that a job could be assigned to a ma-
chine that does not have the smallest execution time for that job). This method
is also known as Fast Greedy, originally proposed for SmartNet system [14].

The parametrization for cMA+LTH is the same one proposed for
cMA+LMCTS in Table 10.6 with only one exception: the population is set to
3 × 3 as an attempt to reduce the computational overload introduced by the
expensive LTH method.

In our tests, the algorithms were run for 30 independent runs. The results are
given in tables 10.7 and 10.8 for the makespan and the flowtime, respectively.
Specifically, we present the average in the 30 runs of the average value (for
the makespan and the flowtime, respectively) during every run (this value is
continuously changing during the run due to the grid dynamism), the standard
deviation (with a 95% confidence interval –CI–), and the deviation between the
current solution and the best one for the same instance size. A 95% CI means
that we can be 95% sure that the range of makespan (flowtime) values are within
the shown interval, if the experiment were to run again. We are comparing in
these tables the results obtained by our two cMAs and the same algorithms but
with a panmictic (non structured) population, which are the best results we
found in the literature for the studied problems [25].

In Table 10.7 we can see that the best overall algorithm for the four kinds of
instances is cMA+LTH, which is the best algorithm in three out of the four cases
(best values for every instance size are bolded). Only in the case of the largest
instances cMA+LTH is outperformed by another algorithm (namely MA+LTH),
but it is the second best algorithm in this case. Regarding the local search method
used, we obtain from the results that the algorithms using TS as a local search
method (MA+LTH and cMA+LTH) clearly outperform the other two ones for
the four different instance sizes, since these two algorithms are the best ones for
the four instances.

296 F. Xhafaet et al.

Table 10.7. Makespan values for the dynamic instances

Heuristic Makespan % CI (0.95) Best Dev.

Small

MA+LMCTS 4161118.81 1.47% 0.34%
MA+LTH 4157307.74 1.31% 0.25%
cMA+LMCTS 4175334.61 1.45% 0.68%
cMA+LTH 4147071.06 1.33% 0.00%

Medium

MA+LMCTS 4096566.76 0.94% 0.32%
MA+LTH 4083956.30 0.70% 0.01%
cMA+LMCTS 4093488.97 0.71% 0.25%
cMA+LTH 4083400.11 0.62% 0.00%

Large

MA+LMCTS 4074842.81 0.69% 0.29%
MA+LTH 4067825.95 0.77% 0.12%
cMA+LMCTS 4087570.52 0.57% 0.60%
cMA+LTH 4063033.82 0.49% 0.00%

Very Large

MA+LMCTS 4140542.54 0.80% 0.82%
MA+LTH 4106945.59 0.74% 0.00%
cMA+LMCTS 4139573.56 0.35% 0.79%
cMA+LTH 4116276.64 0.72% 0.23%

Table 10.8. Flowtime values for the dynamic instances

Heuristic Flowtime % CI (0.95) Best Dev.

Small

MA+LMCTS 1045280118.16 0.93% 0.15%
MA+LTH 1045797293.10 0.93% 0.20%
cMA+LMCTS 1044166223.64 0.92% 0.00%
cMA+LTH 1046029751.67 0.93% 0.22%

Medium

MA+LMCTS 2077936674.17 0.61% 0.07%
MA+LTH 2080903152.40 0.62% 0.22%
cMA+LMCTS 2076432235.04 0.60% 0.00%
cMA+LTH 2080434282.38 0.61% 0.19%

Large

MA+LMCTS 4146872566.09 0.54% 0.02%
MA+LTH 4153455636.89 0.53% 0.18%
cMA+LMCTS 4146149079.39 0.55% 0.00%
cMA+LTH 4150847781.82 0.53% 0.11%

Very Large

MA+LMCTS 8328971557.96 0.35% 0.00%
MA+LTH 8341662800.11 0.35% 0.15%
cMA+LMCTS 8338100602.75 0.34% 0.11%
cMA+LTH 8337173763.88 0.35% 0.10%

The results obtained for the flowtime are given in Table 10.8. As it happened
in the previous case, the best cMA (cMA+LMCTS in this case) outperforms the
best MA (MA+LMCTS) algorithm for all the tested instance sizes, with the only
exception of the very large one. We notice that in this case, the results are also
somehow opposite to the ones obtained for the makespan, since the algorithms
implementing the LMCTS local search method outperform those using LTH for
all the instances. However, these results make sense, since both makespan and
flowtime are conflictive objective values. This means that, for high quality solu-
tions, it is not possible to improve one of the two objectives without decreasing
the quality of the other. This is related to the concept of Pareto optimal front in
multi-objective optimization (see [12,13]). In this paper we are tackling a multi-
objective problem by weighting the two objectives into a single fitness function.
Thus, in this work we are giving more importance to the makespan objective by
weighting this value by 0.75 in the fitness function, while the weight of flowtime

10 Efficient Batch Job Scheduling in Grids Using cMAs 297

was set to 0.25. So we can consider that cMA+LTH is the algorithm obtaining
the best overall results among the tested ones.

10.7 Conclusions and Future Work

In this work we have presented two implementations of Cellular Memetic Algo-
rithms (cMAs) for the problem of job scheduling in Computational Grids when
both makespan and flowtime are simultaneously minimized. cMAs are a family
of population-based metaheuristics that have turned out to be an interesting
approach due to their structured population, which allows to better control the
tradeoff between the exploitation and exploration of the search space. We have
implemented and experimentally studied several methods and operators of cMA
for the job scheduling in Grid systems, which is a challenging problem in today’s
large-scale distributed applications.

The proposed cMAs were tested and compared versus other algorithms in
the literature for benchmarks using both static and dynamic instances. Our
experimental study showed that cMAs are a good choice for scheduling jobs in
Computational Grids given that they are able to deliver high quality planning
in a very short time. This last feature makes cMAs useful to design efficient
dynamic schedulers for real Grid systems, which can be obtained by running
the cMA-based scheduler in batch mode for a very short time to schedule jobs
arriving in the systems since the last activation of the cMA scheduler. The use
of the proposed cMA could highly improve the behavior of real clusters in which
very simple methods (e.g., queuing systems or ad hoc schedulers using specific
knowledge of the grid infrastructure) are used.

In our future work we would like to better understand some issues raised by
the experimental study such as the good performance of the cMAs for consistent
and semi-consistent Grid Computing environments and the not so good perfor-
mance for inconsistent computing instances. Also, we plan to extend the exper-
imental study by considering other operators and methods as well as studying
the performance of cMA-based scheduler(s) in longer periods of time and con-
sidering larger grids. Additionally, we are studying different policies for applying
the local search method in order to make this important step of the algorithm
less computationally expensive. Other interesting line for future research is to
tackle the problem with a multi-objective algorithm in order to find a set of
non-dominated solutions to the problem.

Acknowledgments

F. Xhafa acknowledges partial support by Projects ASCE TIN2005-09198-
C02-02, FP6-2004-ISO-FETPI (AEOLUS) and MEC TIN2005-25859-E and
FORMALISM TIN2007-66523. E. Alba acknowledges that this work has been
partially funded by the Spanish MEC and FEDER under contract TIN2005-
08818-C04-01 (the OPLINK project).

298 F. Xhafaet et al.

References

1. Abraham, A., Buyya, R., Nath, B.: Nature’s heuristics for scheduling jobs on com-
putational grids. In: The 8th IEEE International Conference on Advanced Comput-
ing and Communications (ADCOM), India, pp. 45–52. IEEE Press, Los Alamitos
(2000)

2. Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular
evolutionary algorithms. IEEE Transactions on Evolutionary Computation 9(2),
126–142 (2005)

3. Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms. In: Operations Research/-
Computer Science Interfaces. Springer, Heidelberg (to appear)

4. Alba, E., Dorronsoro, B., Alfonso, H.: Cellular memetic algorithms. Journal of
Computer Science and Technology 5(4), 257–263 (2005)

5. Alba, E., Dorronsoro, B., Alfonso, H.: Cellular memetic algorithms evaluated on
SAT. In: XI Congreso Argentino de Ciencias de la Computación (CACIC) (2005)
DVD Edition

6. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Transac-
tions on Evolutionary Computation 6(5), 443–462 (2002)

7. Alba, E., Troya, J.M.: Cellular evolutionary algorithms: Evaluating the influence of
ratio. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel,
H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 29–38. Springer, Heidelberg
(2000)

8. Alba, E., Dorronsoro, B., Giacobini, M., Tomassini, M.: Handbook of Bioinspired
Algorithms and Applications. In: Decentralized Cellular Evolutionary Algorithms,
ch. 7, pp. 103–120. CRC Press, Boca Raton (2006)

9. Braun, H., Siegel, T.D., Beck, N., Bölöni, L., Maheswaran, M., Reuther, A., Robert-
son, J., Theys, M., Yao, B.: A comparison of eleven static heuristics for mapping
a class of independent tasks onto heterogeneous distributed computing systems.
Journal of Parallel and Distributed Computing 61(6), 810–837 (2001)

10. Carretero, J., Xhafa, F.: Using genetic algorithms for scheduling jobs in large
scale grid applications. Journal of Technological and Economic Development –A
Research Journal of Vilnius Gediminas Technical University 12(1), 11–17 (2006)

11. Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.: Heuristics for scheduling
parameter sweep applications in grid environments. In: Heterogeneous Computing
Workshop, pp. 349–363 (2000)

12. Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for
Solving Multi-Objective Problems. In: Genetic Algorithms and Evolutionary Com-
putation. Kluwer Academic Pubishers, Dordrecht (2002)

13. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley,
Chichester (2001)

14. Freund, R., Gherrity, M., Ambrosius, S., Campbell, M., Halderman, M., Hensgen,
D., Keith, E., Kidd, T., Kussow, M., Limaand, J., Mirabile, F., Moore, L., Rust,
B., Siegel, H.J.: Scheduling resources in multi-user, heterogeneous, computing en-
vironments with smartnet. In: Seventh Heterogeneous Computing Workshop, pp.
184–199 (1998)

15. Ghafoor, A., Yang, J.: Distributed heterogeneous supercomputing management
system. IEEE Comput. 26(6), 78–86 (1993)

16. Giacobini, M., Tomassini, M., Tettamanzi, A.G.B., Alba, E.: Selection intensity in
cellular evolutionary algorithms for regular lattices. IEEE Transactions on Evolu-
tionary Computation 9(5), 489–505 (2005)

10 Efficient Batch Job Scheduling in Grids Using cMAs 299

17. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston (1997)
18. Kafil, M., Ahmad, I.: Optimal task assignment in heterogeneous distributed com-

puting systems. IEEE Concurrency 6(3), 42–51 (1998)
19. Luna, F., Nebro, A.J., Alba, E.: Observations in using grid-enabled technologies

for solving multi-objective optimization problems. Parallel Computing 32, 377–393
(2006)

20. Phatanapherom, S., Kachitvichyaunukul, V.: Fast simulation model for grid
scheduling using hypersim. In: Proceedings of the 2003 Winter Simulation Confer-
ence, pp. 1494–1500 (2003)

21. Talbi, E.-G.: Parallel Combinatorial Optimization. John Wiley & Sons, USA (2006)
22. Talbi, E.-G., Zomaya, A.: Grids for Bioinformatics and Computational Biology.

John Wiley & Sons, USA (2007)
23. Xhafa, F., Carretero, J., Alba, E., Dorronsoro, B.: Design and Evaluation of Tabu

Search Method for Job Scheduling in Distributed Environments. In: The 11th In-
ternational Workshop on Nature Inspired Distributed Computing (NIDISC 2008)
held in conjunction with The 22th IEEE/ACM International Parallel and Dis-
tributed Processing (NIDISC 2008), Florida, USA, April 14-18 (to appear, 2008)

24. Xhafa, F., Carretero, J., Barolli, L., Durresi, A.: Requirements for an event-based
simulation package for grid systems. Journal of Interconnection Networks 8(2),
163–178 (2007)

25. Xhafa, F.: Hybrid Evolutionary Algorithms. In: A Hybrid Heuristic for Job
Scheduling in Computational Grids, ch. 11. Studies in Computational Intelligence,
vol. 75, pp. 269–311. Springer, Heidelberg (2007)

26. Xhafa, F.: An experimental study on GA replacement operators for scheduling on
grids. In: The 2nd International Conference on Bioinspired Optimization Methods
and their Applications (BIOMA), Ljubljana, Slovenia, October 2006, pp. 212–130
(2006)

	Introduction
	The Batch Job Scheduling on Grids
	 Optimization Criteria

	A cMA for Resource Allocation in Grid Systems
	 Cellular Memetic Algorithms
	 Application of the cMA to job Scheduling

	Computational Results on Static Instances
	 Benchmark Description
	 Evaluation and Discussion

	Computational Results on Dynamic Instances
	 Dynamic Grid Simulator
	 Dynamic Benchmark Description

	Evaluation and Discussion
	Conclusions and Future Work
	References
	empty.pdf
	Introduction
	On-Line Robot Control from Gestures
	Natural Human--Robot Interaction for On-Line Control

	Detection and Tracking of Humans in the Working Scenario
	Recursive Interactive Method for Body Modeling
	Triangulation of Singular Points Obtained from 2D Movement Detection
	Shape from Silhouette by Carving Reconstruction
	Proposed Fusion Method for Body Modelling

	Human--Robot Cooperation Strategies
	Potential Applications
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

