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Abstract
This paper presents a comparative analysis of different connectionist and statistical models for forecasting the weather of Vancouver, Canada.

For developing the models, one year’s data comprising of daily temperature and wind speed were used. A multi-layered perceptron network

(MLPN) and an Elman recurrent neural network (ERNN) were trained using the one-step-secant and Levenberg–Marquardt algorithm. Radial basis

function network (RBFN) was employed as an alternative to examine its applicability for weather forecasting. To ensure the effectiveness of

neurocomputing techniques, the connectionist models were trained and tested using different datasets. Moreover, ensembles of the neural networks

were generated by combining the MLPN, ERNN and RBFN using arithmetic mean and weighted average methods. Subsequently, performance of

the connectionist models and their ensembles were compared with a well-established statistical technique. Experimental results obtained have

shown RBFN produced the most accurate forecast model compared to ERNN and MLPN. Overall, the proposed ensemble approach produced the

most accurate forecast, while the statistical model was relatively less accurate for the weather forecasting problem considered.

# 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Weather forecasts provide critical information about future

weather. They help to safeguard life and property, and play a

crucial role in planning the activities of government, industry,

and the public. Weather forecasting remains a complex

business, due to its chaotic and unpredictable nature [21,26].

Forecasting, in general is a process that is neither wholly

science nor wholly art [20,39,45–50]. It is known that persons

with little or no formal training can develop considerable

forecasting skills [14,17]. For example, farmers often are quite

capable of making their own short-term forecasts of those

meteorological factors that directly influence their livelihood,

and a similar statement can be made about pilots, fishermen,

mountain climbers, etc. Weather phenomena, usually of a

complex nature, have a direct impact on the safety and/or

economic stability of such persons. Accurate weather forecast

models are important to the regions, where the entire agri-
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culture depends upon weather [1]. It is thus a major concern to

identify any trends for weather parameters to deviate from its

periodicity, which would disrupt the economy of the country.

This fear has been aggravated due to threat by the global

warming and green house effect. The impact of extreme

weather phenomena on society is growing more and more

costly, causing infrastructure damage, injury and the loss of life.

Previously, various methods were developed and used by

meteorologists for weather forecasting from relatively simple

observation of the sky to highly complex computerized

mathematical models [1,2,11,24,28,33,35]. Among them,

recently little research has been carried out on the application

of artificial neural networks (ANN) techniques for modeling the

chaotic behavior of weather [9,19,21,22,26,27,41]. In fact,

ANN is very well suited for weather forecasting problems due

to two potential reasons. Firstly, they are able to approximate

numerically any continuous function to the desired accuracy. In

this sense, ANN may be seen as multivariate, non-linear and

non-parametric methods. They should be expected to model

complex non-linear relationships, such as weather forecasting,

much better than the traditional linear models that still form

the core of the forecaster’s methodology. Secondly, ANN are
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Fig. 1. Architecture of multi-layered perceptron network.
data-driven methods, in the sense that it is not necessary for the

researcher to postulate tentative models and then estimate their

parameters. Given a sample of input and output vectors, they

are able to automatically map the relationship between them;

they learn this relationship, and store this learning into their

parameters. As these two characteristics suggest, ANN should

prove to be particularly useful when one has a large amount of

data, but little a priori knowledge about the laws that govern the

system that generated the data.

Among ANN techniques, multi-layered perceptron network

(MLPN), Elman recurrent neural networks (ERNN) and radial

basis function network (RBFN) are most commonly used

methods [4,8,17,24,34]. The RBFN is a popular alternative to the

MLPN. Although it is not as well suited to larger applications,

can offer advantages over the MLPN in some applications

[4,8,31]. In comparison, in ERNN, the temporal nature of the

data is taken into account. MLPN are capable of modeling non-

linearity and the only way to adapt MLPN to temporal data is to

provide the entire time series to the network as input at each

training cycle. This not only requires networks of immense size,

which in turn require a great deal of processing power and time to

converge, but also limits the network to fixed-length time series

[13,25]. The technique of combining the predictions of multiple

networks to produce a single network, called as an ensemble of

neural networks, have been investigated by many researchers

[7,10,16,32,36,40,42–44]. The resulting network is generally

more accurate than any of the individual networks making up the

ensemble [29]. Moreover, it is reported that one of the effective

combining schemes is to simply average the predictions of the

network [3,16,18,22].

The main objective of this study is to investigate applicability

of ensembles of neural networks for weather analysis of

Vancouver, British Columbia, Canada. To achieve this objective,

ANN-based accurate weather forecast models are developed, and

performances of the ANN models and their resulting ensembles

are computed as well as compared with a classical statistical

method. To improve the learning capability of the ANN models,

second order error information using the one-step-secant and the

Levenberg–Marquardt approaches for MLPN and ERNN are

used. Furthermore, a RBFN, which is also a well-established

technique for function approximation, is also applied [31].

Subsequently, ensembles of the ANN models are computed and

compared with individual ANN and statistical models.

In Section 2, a brief theoretical background of MLPN, RNN,

RBFN and ensembles of neural networks is presented. The

experimentation setup is described in Section 3, and results and

discussions are provided in Section 4. Finally, some conclu-

sions are drawn towards the end in Section 5.

2. Artificial neural networks

Artificial neural networks (ANNs) were designed to mimic

the characteristics of the biological neurons in the human brain

and nervous system [38]. The network ‘‘learns’’ by adjusting

the interconnections (called weights) between layers. When the

network is adequately trained, it is able to generalize relevant

output for a set of input data. Learning typically occurs by
example through training, where the training algorithm, such as

one-step-secant and the Levenberg–Marquardt, iteratively

adjusts the connection weights (synapses).

2.1. Multi-layered perceptron networks (MLPN)

Typical MLPN is arranged in layers of neurons (nodes), where

every neuron in a layer computes the sum of its inputs and passes

this sum through a non-linear function (an activation function) as

its output. Each neuron has only one output, but this output is

multiplied by a weighting factor if it is to be used as an input to

another neuron (in a next higher layer). There are no connections

among neurons in the same layer. Fig. 1 illustrates a three-layered

MLPN used for the weather forecasting.

Activation functions for the hidden layers are needed to

introduce non-linearity into the network. Without non-linearity,

hidden layers would not make networks more powerful than

just simple perceptrons (which do not have any hidden layers,

only input and output layers). A composition of linear functions

is again a linear function. It is the non-linearity (i.e. the

capability to represent non-linear functions) that makes MLPN

so powerful. For backpropagation learning, however, it must be

differentiable and saturating at both extremes. Sigmoid

functions such as the logistic and hyperbolic tangent functions,

and the Gaussian function are the most common choices. If the

transfer functions were chosen to be linear, then the network

would become identical to a linear filter [15].

The training of a network by backpropagation [6] involves

three stages: the feedforward of the input training pattern, the

calculation and backpropagation of the associated error, and the

adjustment of the weights. After training, application of the net

involves only the computations of the feedforward phase. In

order to train the network, input is shown to the net together

with the corresponding known output, and if there exists a

relation between the input, jm
k , and the output, Om

i , the net learns

by adjusting the weights until an optimum set of weights that

minimizes the network error is found and the network then

converges.

2.2. Elman recurrent neural networks (ERNN)

ERNN, also known as partially recurrent neural network, are

a subclass of recurrent networks [12,13]. They are multi-layer
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Fig. 2. Schematic diagram of three-layered Elman recurrent neural network.
perceptron networks augmented with one or more additional

context layers storing output values of one of the layers delayed

by one-step and used for activating this or some other layer in the

next time step, as shown in Fig. 2. The ERNN has context units,

which store delayed hidden layer values and present these as

additional inputs to the network. The ERNN can learn sequences

that cannot be learned with other recurrent neural network e.g.

with Jordan recurrent neural network (which is a similar

architecture with a context layer fed by the output layer) since

networks with only output memory cannot recall inputs that are

not reflected in the output. Several training algorithms for

calculation of error gradient in general recurrent networks exist.

Usually, both hidden and output units have non-linear

activation functions. Note that external input at time t does not

influence the output of any unit until time t + 1. The network is

thus a discrete dynamical system.

2.3. Radial basis function network (RBFN)

RBFN network consists of three-layers: input layer, hidden

layer, and output layer, as shown in Fig. 3. The neurons in hidden

layer are of local response to its input and known as RBF neurons,

while the neurons of the output layer only sum their inputs and are

called linear neurons [30]. It is well known that neural network

training can result in producing weights in undesirable local

minima of the criterion function. This problem is particularly

serious in recurrent neural networks as well as for MLPN with

highly non-linear activation functions, because of their highly
Fig. 3. Architecture of radial basis function network.
non-linear structure, and it gets worse as the network size

increases. This difficulty has motivated many researchers to

search for a structure where the output dependence on network

weights is less non-linear. The RBFN has a linear dependence on

the output layer weights, and the non-linearity is introduced only

by the cost function for training, which helps to address the

problem of local minima. Additionally, this network is inherently

well suited for weather prediction, because it naturally uses

unsupervised learning to cluster the input data [8,31,34].

There are two basic methods to train an RBFN in the context

of neural networks. One is to jointly optimize all parameters of

the network similarly to the training of the MLPN. This method

usually results in good quality of approximation but also has

some drawbacks such as a large amount of computation and a

large number of adjustable parameters. Another method is to

divide the learning of an RBFN into two steps. The first step is

to select all the centers m in terms of an unsupervised clustering

algorithm such as the K-means algorithm proposed by Linde

et al. (denoted as the LBG algorithm) [5], and choose the radii s

by the k-nearest neighbor rule. The second step is to update the

weights B of the output layer, while keeping the m and s fixed.

The two-step algorithm has fast convergence rate and small

computational burden.

We used a two-step learning algorithm to speed up the

learning process of the RBFN. The selection of the centers and

radii of RBF neurons can be done naturally in an unsupervised

manner, which makes this structure intrinsically well suited for

weather prediction. As a result, we adopt below a self-

organized learning algorithm for selection of the centers and

radii of the RBF in the hidden layer, and a stochastic gradient

descent of the contrast function for updating the weights in the

output layer. For the selection of the centers of the hidden units,

we may use the standard k-means clustering algorithm [8]. This

algorithm classifies an input vector x by assigning it the label

most frequently represented among the k-nearest neighbor

samples. Specifically, it places the centers of RBF neurons in

only those regions of the input space, where significant data are

present. Once the centers and radii are established, we can make

use of the minimization of the contrast function to update the

weights of the RBFN.

ANNs offer a variety of advantages, including: (a) an ability

to solve complex and non-linear problems, such as weather

forecasting, that cannot be described explicitly or that are

difficult to compute using traditional methods; (b) the

capability of a neural network to learn a given process

automatically through a training phase; (c) there is no need to

assume or recognize an underlying distribution for the data

collected; (d) the compact form in which the knowledge is

stored and the comparative ease and speed at which this

knowledge can be accessed; (e) robustness in the presence of

noise; (f) the high degree of accuracy by any trained network

when an ANN solution is used to generalize unseen cases.

2.4. Ensembles of neural networks

No single classification algorithm can be regarded as a

panacea. In fact, different neural networks perform differently
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Fig. 4. Architecture of a classifier ensemble of neural networks.
due to different architectures, different learning parameters/

algorithms, different initial random weights, different training

sets, etc. [5]. Generally, the errors are not fully correlated

among neural networks when using multiple networks for a

single problem. Particularly, if a negative correlation exists

among the multiple networks, then an ensemble approach does

better than a single network approach.

Fig. 4 illustrates the basic framework for a classifier

ensemble. In this example, neural networks are the basic

classification method, though conceptually any classification

method can be substituted in place of the networks. Each

network in Fig. 4 ensemble (network 1 through network m in

this case) is trained using the training instances for that

network. Then, for each example, the predicted output of each

of these networks (Oi in Fig. 4) is combined to produce the

output of the ensemble.

Combining outputs (i.e. ensembles) can be conducted by

computing majority vote, arithmetic mean, median, weighted

average or trimmed mean of multiple neural networks and/or by

setting up another trained neural network (i.e. stacked) [37].

3. Experiment setup and analysis

In the normal case, architecture of the connectionist models is

determined after a time-consuming trial-and-error procedure

[50]. To circumvent this disadvantage, we use a more systematic

way of finding good architectures. A sequential network

construction [23] is employed to select an appropriate number

of hidden neurons for each of the connectionist model

considered. First, a network with a small number of hidden

neurons is trained. Then a new neuron is added with randomly

initialized weights and the network is retrained with changes

limited to these new weights. Next all weights in the network are

retrained. This procedure is repeated until the number of hidden

neurons reaches a preset limit and then substantially reduces the

training time in comparison with time needed for training of new

networks from scratch. More importantly, it creates a nested set

of networks having a monotonously decreasing training error and

provides some continuity in the model space, which makes a

prediction risk minimum more easily noticeable.
The concept of forecasting-model consists of: (a) proper

model selection of the technique that matches with the local

requirements, (b) calculation and update of model parameters,

which includes the determination of the network parameters

and selection of the method to update the constants values as the

circumstance varies (seasonal changes), (c) evaluation of the

model performance to validate the model using historical data,

also the final validation to use the model in real life conditions.

The evaluation terms includes accuracy, ease of use and bad/

anomalous data detection and (d) update/modification of the

model, if the performance is not satisfactory. Due to sudden

variation in weather parameters, the model becomes obsolete

and inaccurate. Thus, model performance and accuracy should

be evaluated continuously [23]. Sometimes, periodic update of

parameters or change of model structure is also required.

We used the weather data from 1 September 2000 to 31

August 2001 for analyzing the connectionist models. For

MLPN and ERNN, we used the dataset from 11 to 20 January

2001 for testing and remaining data for training the networks.

We also used the dataset 1–15 April 2001 for testing and the

remaining for training of RBFN, MLP and ERNN networks. We

used this method to ensure that there is no bias on the training

and test datasets. We used a Pentium-III, 1 GHz processor with

256 MB RAM and all the experiments were simulated using

MATLAB. The following steps were taken before starting the

training process: (a) the error level was set to a relatively small

value (10�4) that could be decreased to a smaller level, but the

results show satisfactory prediction of the required outputs.

Also setting the training accuracy to a higher level will take a

much longer training time; (b) the hidden neurons were varied

(10–80) and the optimal number for each network were then

decided as mentioned previously by changing the network

design and running the training process several times until a

good performance was obtained; (c) when the network faces

local minima (false wells), new ones to escape from such false

wells replace the whole set of network weights and thresholds.

Actually, a random number generator was used to assign the

initial values of weights and thresholds with a small bias as a

difference between each weight connecting two neurons

together since similar weights for different connections may

lead to a network that will never learn.

MLPN, ERNN and RBFN were used after deciding the

relevant input/output parameters, training/testing data sets and

learning algorithms. To decide architectures of the MLPN and

ERNN, a trail and error approach was used. Networks were

trained for a fixed number of epochs, and the error gradient was

observed over these epochs. Performance of the MLPN and

ERNN networks were evaluated by increasing or decreasing the

number of hidden nodes. Since no significant reduction in error

was observed beyond 45 hidden nodes, a single hidden layer

network comprising of 45 neurons was identified. The input and

output values were scaled between�1 and +1. One-step-secant

and Levenberg–Marquardt learning algorithms were used for

training the MLPN and ERNN networks. The activation

functions for MLPN and ERNN models were chosen to be log-

sigmoid and hyperbolic tangent sigmoid for hidden units,

respectively, and pureline for the output units. Since, there is no
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Fig. 5. Convergence of the OSS and LM training algorithms using: (a) MLPN and (b) ERNN.

Fig. 6. Comparison of actual and forecasted temperature using OSS and LM

approaches for MLPN and ERNN.
exact rule for fixing the number of hidden neurons and hidden

layers to avoid underfitting or overfitting in MLPN and ERNN,

therefore, RBFN is investigated to address this difficulty. In

RBFN, the numbers of hidden layers and neurons selected by

the model were 2 and 180, respectively; the Gaussian activation

function was chosen for hidden units, and the pureline for the

output units.

The three strategies adopted for testing the applicability of

an ANN in the present work are: (a) to test the capability of an

ANN to correctly predict the output for the given input set

originally used to train the network (accuracy performance); (b)

to test the capability of the ANN to correctly predict the output

for the given input sets that were not included in the training set

(generalized performance); (c) to develop a neural network

model which could be trained faster.

3.1. Weather parameters

3.1.1. Temperature

Our initial analysis of the data has shown that the most

important weather parameter is the temperature variable (in

degree Celsius units). This variable also represents a strong

correlation with other weather parameters. Temperature, in

general, can be measured to a higher degree of accuracy relative

to any of the other weather variables. Anyhow, forecasting

temperature requires the consideration of many factors; day or

night, clear or cloudy skies, windy or calm, or will there be any

precipitation? An error in judgment on even one of these factors

may cause forecasted temperature to be off by as much as 208.
Historical temperature data recorded by a weather station at the

prominent meteorological center of the Vancouver, British

Columbia is used for the analysis.

Space heating and cooling are the human response to how hot

and how cold it ‘feels’. Temperature in this case is only one of the

contributors to such human response. Factors such as wind speed

in the winter and humidity in the summer have to be accounted

for when describing how cold or hot it ‘feels’. For that purpose,

the weather department developed a measure of how cold the air

feels in the winter or how hot the air feels in the summer. These

two new measurements are called the wind-chill and the heat

index, respectively. Meteorologists use wind-chill equations to

calculate the rate at which exposed human skin loses body heat.
3.1.2. Wind speed

It is significant in winter, if the temperature is low, which is

roughly below 4.4 8C. When temperature is below freezing

point, wind is a major factor determining the cooling rate. The

wind speed recorded in Vancouver, British Colombia for the

year 2001 is considered for this study.

4. Test results and discussions

4.1. Evaluation of OSS and LM learning algorithms

The training convergence of LM and OSS learning

approaches for MLPN and ERNN are illustrated in Fig. 5(a)

and (b), respectively.

The optimal network is the one that has the lowest error on

test set and reasonable learning time. All the obtained results

were compared and evaluated by the maximum absolute

percentage error (MAPE), root mean squared error (RMSE),

and mean absolute deviation (MAD). Test results (January

2001) for the actual versus predicted temperature and wind

speed using MLPN and ERNN with OSS and LM approaches

are plotted in Figs. 6 and 7, respectively. Relative percentage

error for temperature and wind speed is also illustrated in

Figs. 8 and 9, respectively. Empirical results are depicted in

Table 1.

In this paper, the assessment of the forecasting performance

of the trained networks is done by various forecasting errors. If

the training is successful, the network is able to generalize well,

resulting in a high accuracy in the forecasting of unknown
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Fig. 7. Comparison of actual and forecasted wind speed using OSS and LM

approaches for MLPN and ERNN.
patterns (provided the training data is sufficient representative

of the forecasting situation). Various forecasting error measures

between the actual and forecasted weather parameters are

defined, however, the most commonly adopted by weather

forecasters are shown in Table 1.

Table 1 indicates that the LM algorithm generated the lowest

errors and higher correlation with respect to the actual values
Fig. 8. Relative percentage error between actual and f

Fig. 9. Relative percentage error between actual and f

Table 1

Performance of OSS and LM for temperature (8C) and wind speed (km/h) forecas

Weather parameter Performance indicator OSS lea

MLPN

Temperature MAPE 0.017

RMSE 0.020

MAD 0.817

R2 0.964

Time (min) 0.4

Iterations 850

Wind speed MAPE 0.089

RMSE 0.198

MAD 0.829

R2 0.971

Time (min) 0.3

Iterations 851
than that of the OSS algorithm. However, the LM algorithm

took more training time and had relatively less number of

iterations compared to the OSS algorithm. The training time for

the LM algorithm ranged from a few minutes to 30 min, while it

took only a few seconds to run the models with OSS learning

algorithm. In fact, with the improvement of computing speed

(and big memory), the training time due to different algorithms

may no longer be such a crucial factor if the training record is

not too long and the design architecture is not too complicated.

The testing accuracy could get worse if the selection of the

algorithm to represent the problem is not proper.

4.2. Weather forecasts with multiple neural networks

Test results (April 2001) for the actual versus predicted

temperature and wind speed using MLPN (OSS) and ERNN

(OSS) and RBFN are illustrated in Figs. 10 and 11.

Table 2 presents empirical results from the MLPN, ERNN

and RBFN models. It is shown that the MLPN can achieve

useful weather forecasting results in an efficient way and
orecasted temperature: (a) MLPN and (b) ERNN.

orecasted wind speed: (a) MLPN and (b) ERNN.

t

rning algorithm LM learning algorithm

ERNN MLPN ERNN

0 0.0165 0.0087 0.0048

0 0.0199 0.0099 0.0067

5 0.7944 0.4217 0.2445

7 0.9457 0.9998 0.9826

1.8 30 30

1135 7 10

6 0.0873 0.0770 0.0333

9 0.0199 0.0162 0.0074

7 0.7618 0.6754 0.3126

4 0.9886 0.9974 0.9995

0.5 1 8

1208 8 12
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Fig. 10. Comparison of different NN techniques for 15-day ahead temperature

forecasting.

Fig. 11. Comparison of different NN techniques for 15-day ahead wind speed

forecasting.
exhibited lower errors. It is capable of representing non-linear

functions than the single layered perceptron. However, the

learning process of the MLPN algorithm is time-consuming and

its performance is heavily dependent on the network parameters
Table 2

Performance comparison of the NN models, the NN ensembles and the

statistical model

Model Parameter Temperature (8C) Wind speed (km/h)

MLPN MAPE 0.0605 0.1000

RMSE 0.6664 2.1006

MAD 0.5561 1.9185

R2 0.9344 0.9588

ERNN MAPE 0.0552 0.0740

RMSE 0.5945 1.6556

MAD 0.5058 1.4152

R2 0.9382 0.9761

RBFN MAPE 0.0249 0.0573

RMSE 0.2765 1.1835

MAD 0.2278 0.9714

R2 0.9868 0.9886

NN mean-ensemble MAPE 0.0265 0.0418

RMSE 0.3385 1.0045

MAD 0.2441 0.8051

R2 0.9840 0.9915

NN best-ensemble MAPE 0.0214 0.0352

RMSE 0.2416 0.7593

MAD 0.1978 0.6227

R2 0.9901 0.9958

Statistical model MAPE 0.2445 0.3997

RMSE 2.4339 8.4228

MAD 1.9647 7.4054

R2 0.1955 0.2552
like learning rate and momentum. On the other hand, the

ERNN, compared to the MLPN, could efficiently capture the

dynamic behavior of the weather, resulting in a more compact

and natural representation of the temporal information

contained in the weather profile. The recurrent network took

more training time, but this depends on the data size and the

number of network parameters. It can be inferred that the

ERNN could yield more accurate results, if good data-selection

strategies, training paradigms, and network input and output

representations are determined properly. In comparison, the

RBFN network gave the overall best results in terms of

accuracy and training time. The RBFN is better correlated

compared to the MLPN and ERNN. The proposed RBFN

network can also overcome several limitations of the MLPN

and ERNN such as highly non-linear weight update and the

slow convergence rate. Since the RBFN has natural unsuper-

vised learning characteristics and a modular network structure,

these properties make it more effective for fast and robust

weather forecasting.

Table 2 indicates that the temperature was predicted with the

lowest MAPE, RMSE and MAD values by the individual

models of MLPN, ERNN and RBFN. In comparison, wind

speed predictions represented the least accurate results (i.e.

higher MAPE, ERNN and RBFN values) for all the three

individual models. The different levels of errors associated with

temperature and wind speed could be due to the variability in

data and of the modeling structures.

4.3. Ensembles of multiple neural networks

The experimental comparisons of the MLPN, ERNN and

RBFN pointed out that no single learning algorithm or model

can be regarded as a panacea. Here, the use of ensembles of

neural networks (NN) as an alternative approach is proposed.

In this study, the results provided by these three neural

networks are merged according to two fashions: simple

average and weighted average. In simple average method,

obviously equal weights were assigned to all the three

predicted outputs and the resulting ensemble is here called

‘‘NN mean-ensemble’’. On the other hand, in weighted

average method, full weights (i.e. 1) were assigned to the best

values that were closest to the actual values and zero weight to

the remaining values among the predicted outputs. This led to

‘‘NN best-ensemble’’. Figs. 12 and 13 present comparison of

the two ensembles with actual temperature and wind speed,

respectively.

Table 2 lists the performance of the ‘‘NN mean-ensemble’’

and ‘‘NN best-ensemble’’. Experimental results point out that

the use of neural networks ensembles can constitute a valid

alternative to the development of new neural approximators

more complex than the present ones. In particular, it is shown

that combination of NN results provides function approxima-

tion accuracies better than the ones obtained by single

approximators after long designing phases. In addition, it is

interesting to compare NN ensembles performances with the

one of the classical statistical methods, which is being

presented in the following subsections.
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Fig. 12. Comparison between actual temperature and NN ensembles.

Fig. 13. Comparison between actual wind speed and NN ensembles.

Fig. 15. Actual wind speed and statistical forecasting trendline.
4.4. Statistical forecasts

Regression analysis was applied for weather predictions in

addition to the forecasts made by the MLPN, ERNN, RBFN

models and their ensembles. In regression analysis, a trendline

of polynomial function was drawn and extended beyond the

actual data of temperature and wind speed to predict their future

values. Figs. 14 and 15 show exponential trendlines for

temperature and wind speed, respectively.

The developed equations for the temperature and wind speed

trendlines are as follows:

T ¼ 0:000004t3 � 0:002t2 þ 0:292t þ 8:513 (1)

W ¼ 0:0000004t3 � 0:00005t2 � 0:038t þ 24:415 (2)

where T is the temperature (8C), W the wind speed (km/h) and t

is the time of forecast (day). Eqs. (1) and (2) were used for

temperature and wind speed forecasting, respectively, for 1–15

April 2001. The MAPE, RMSE, MAD and R2 values obtained

through the statistical models are summarized in Table 2. In
Fig. 14. Actual temperature and statistical forecasting trendline.
over all, the statistical forecasts produced higher errors both for

temperature and wind speed.

4.5. Comparison of neural networks and statistical

methods for weather forecasts

Performance of MLPN, ERNN, RBFN, NN mean-ensemble,

NN best-ensemble, and statistical models are evaluated by

computing a number of measures such as MAPE, RMSE, MAD

and R2, as shown in Table 2. It is indicated that the ‘‘NN best-

ensemble’’ produced the most accurate results. In comparison,

the statistical models forecasted the temperature and wind

speed with least accuracy. This illustrates the ‘‘NN best-

ensemble’’ approach is superior to the statistical model as well

as individual neural networks for this weather analysis study.

Figs. 16 and 17 illustrate the relative percentage errors of the

NN mean-ensemble and statistical model for temperature and

wind speed forecasts, respectively. It is shown that the

statistical model generated higher errors compared to the

NN mean-ensemble.
Fig. 16. Relative error of NN mean-ensemble and statistical model for tem-

perature forecast.

Fig. 17. Relative error of NN mean-ensemble and statistical model for wind

speed forecast.
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The above six models may be ranked based on their overall

performance in descending (from good to not-so-good) order as

follows: (1) NN best-ensemble, (2) NN mean-ensemble, (3)

RBFN, (4) ERNN, (5) MLPN, and (6) statistical model.

5. Conclusions

In this study, a number of connectionist and statistical

models were developed for forecasting the weather of

Vancouver, Canada. One year’s data comprising of daily

temperature and wind speed were used. Performance of

multi-layered perceptron neural network (MLPN), Elman

recurrent neural network (ERNN) and radial basis functions

network (RBFN) were contrasted using several statistical

measures. Compared to the MLPN, the ERNN could

efficiently capture the dynamic behavior of the weather,

resulting in a more compact and natural internal representa-

tion of the temporal information contained in the weather

profile. ERNN took more training time, however, it is

dependent on the training data size and the number of

network parameters. It can be inferred that ERNN could yield

more accurate results, if good data selection strategies,

training paradigms, and network input and output representa-

tions are determined properly. Levenberg–Marquardt (LM)

approach appears to be the best learning algorithm for

mapping the different chaotic relationships. Due to the

calculation of Jacobian matrix at each epoch, LM approach

requires more memory and is computationally complex while

compared to one-step-secant (OSS) algorithm. On the other

hand, RBFN gave the best results in terms of accuracy and

fastest training time. Empirical results clearly demonstrate

that RBFN are much faster and more reliable for the weather

forecasting problem considered. The proposed RBFN net-

work can also overcome several limitations of the MLP and

ERNN networks such as highly non-linear weight update and

slow-convergence rate. Since the RBFN has natural

unsupervised learning characteristics and modular network

structure, these properties make it a more effective candidate

for fast and robust weather forecasting.

Ensembles of the neural networks were generated by

linearly combining the MLPN, ERNN and RBFN using

arithmetic mean and weighted average methods. Subsequently,

performance of the connectionist models and their ensembles

were contrasted with a statistical model. Experimental results

obtained have shown RBFN produced the most accurate

forecast model compared to ERNN and MLPN. In overall, the

ensembles of neural networks produced the most accurate

forecasts, while the statistical model was relatively less

accurate for this weather forecasting problem. Moreover,

overall performance of the six models be ranked in descending

order as follows: (1) NN best-ensemble, (2) NN mean-

ensemble, (3) RBFN, (4) ERNN, (5) MLPN, and (6) statistical

model.

Although reasonable accuracy have been achieved through

neurocomputing models using 1-year weather data, it will be

interesting to study whether the inclusion of other seasonal

factors would improve the forecast accuracy.
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