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Bioinformatics is a fast growing field in the scientific community. It involves a wide
range of problems, for example, DNA sequence analyses, RNA secondary structure
predictions, phylogenetic analyses and microarray analyses (just to name a few).
Furthermore, new problem domains are constantly evolving, such as proteomics
and biomedical applications. In fact, many of these problems are very complex
in nature and are often hard to solve by conventional methods. We have learned
that Evolutionary Computing (EC) is a powerful optimization technique that solves
complex problems and it has been proven successful in various application domains.
Therefore, in this chapter, we introduce EC applications in Bioinformatics. The
chapter first gives an overview of some key concepts and classical problems in Bioin-
formatics. Then, it is followed by two case studies, where the problem’s background,
the mathematical formulation, the EC representation and the performance of the
methods are presented in details.

I.1 Introduction

I.1.1 The Precursor of Bioinformatics

The origin of Bioinformatics can be traced back to the first discovery of modern
genetics. In 1854, Gregor Johann Mendel (is now known as the father of genetics)
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conducted a study on inheredity of a garden pea called Pisum sativum. The study
was to breed a population of the garden pea with different physical characteristics,
such as seed shapes, seed colors and flower colors. Then the variations of these
characteristics were observed in their offspring. Mendel discovered some regular
patterns from the offspring by breeding parents with selected characteristics. Af-
ter some careful analyses on these patterns, Mendel established two fundamental
principles of genetics, which are now known as the Mendel’s first and second law.

Another milestone of genetics is the discovery of DeoxyriboNucleic Acid (DNA)
as genetic material. However, the discovery was not straightforward. First, in
1928, Frederick Griffith discovered an unknown agent that transforms a pneumonia
causing bacteria called Streptococcus pneumoniae from R-type (which is harmless)
to S-type (which is highly infectious). This unknown agent was believed to be
responsible for the transformation of the genetic material in the bacteria. In 1940s,
Oswald T. Avery and his colleagues proposed that this transformation agent was
indeed DNA. Later in 1953, Alfred D. Hershey and Martha Chase provided more
evidence to confirm Avery’s discovery. A few years later, RiboNucleic Acid (RNA)
was discovered to be the genetic material of viruses.

I.1.2 Modern Bioinformatics

The rapid growth of Bioinformatics was triggered by the introduction of the DNA
sequencing technique. Walter Gilbert and Frederick Sanger were rewarded the Nobel
Prize in Chemistry in 1980 for their contribution to nucleic acid sequencing. In
1981, the first complete genome sequencing was done on a circular genome of the
human mitochondrion. Since then, many more genomes have been sequenced. In
addition, the sequencing procedure became more time and cost effective. In 1990,
the Human Genome Project (HGP) was initiated in the United States and was led
by the National Institutes of Health (NIH) and the Department of Energy (DOE).
After 13 years, the completion of the Human Genome Project was announced in
2003.

Bioinformatics has now become a large field with cross-expertise, such as molec-
ular biology, genetics, biochemistry, computer science and statistics. Furthermore,
this field continues to grow and evolve different sub-fields, such as proteomics and
biomedical applications. In fact, more and more sub-fields are expected to evolve in
the next 10 to 20 years.

I.1.3 The Chapter Goal and Layout

In this chapter, we will introduce how Evolutionary Computing (EC) can be used to
solve problems in Bioinformatics. First we will discuss some important concepts in
Bioinformatics. We will also introduce some key Bioinformatics problems and their
mathematical formulations. Finally, we will provide two case studies and see how
they can be solved using EC.
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I.2 An Overview of Bioinformatics

I.2.1 Important Concepts in Bioinformatics

The cell is the fundamental unit of life (with the exception of viruses). Some organ-
isms are single-cell and some are multi-cell. For example, a human being is composed
of billions of cells. Although, all the cells are genetically identical, they can differ-
entiate into different types of cells with different functionality to work together as a
system. These complex systems not only require mechanisms that regulate the cells
to work together, but also require mechanisms that regulate the processes within
a cell. As a result, these intra-cellular and inter-cellular regulations in turn define
the organism. In fact, all this information is encoded in the genetic material and
is passed down in generations. For many organisms, DNA is the genetic material,
which contains all the essential information about this organism. RNA and protein
are important intermediates that carry out the ’instructions’ written in DNA. Be-
low we will discuss DNA, RNA and protein in detail and explain the relationships
between them.

The DeoxyriboNucleic Acid is where the genetic information is stored. The DNA
is a chain of small molecules called nucleotides. Each nucleotide is composed of three
molecular components, a five-carbon sugar, a phosphate group and a nitrogenous
base. In addition, there are four types of nitrogenous bases: adenine (A), thymine
(T), guanine (G) and cytosine (C). Figure I.1 gives the molecular diagram of a
DNA strand. The genetic information is encoded by alternating these four bases
in the DNA strand. Moreover, this genetic information is usually represented as a
DNA sequence, a string composed of characters from the alphabet {A, T, G, C}.
A DNA strand is oriented, where one end is called the 5’-end (five prime end) and
the other end is called the 3’-end (three prime end). Notice that some DNA strands
are linear and some are circular. Regardless of the starting point of a DNA strand,
the convention is to write the DNA sequence from the 5’-end to the 3’-end. That
is, if we write TCGTA, the left end is the 5’-end and the right end is the 3’-end,
i.e. 5’-TCGTA-3’. The length of a DNA strand can vary from a few thousands
base pairs to a few millions base pairs in different organisms. DNA strands come
in pairs and they are called complementary strands. Two complementary DNA
strands complement of each other in the opposite orientation. Base A and base T
are complements of each other, while base G and base C are complements. Two
complementary DNA strands are bonded together in the shape of a double-helix
by hydrogen bonds. Figure I.2 shows the double-helix complementary structure of
DNAs. In fact, there are other higher level structures of the DNA strand, such as
the supercoilng structure. Except during some cellular events (such as transcription
or duplication), DNA strands are coiled and packed up with a special type of protein
called histone. This super-structure is visible under the electron micrograph and it
is called the chromosome.

The RiboNucleic Acid is similar to the DNA. In RNA, the five-carbon sugar
has a hydroxyl group (OH) attached to the 2’ carbon, instead of a hydrogen atom
(H) as in the DNA. Besides, the base thymine (T) is replaced by uracil (U) in
the RNA. But unlike the DNA, the RNA is usually single stranded. However, its
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Figure I.1. The Molecular Structure of DNAs

Figure I.2. The Double Helix Structure of DNAs

complementary property sometimes is exhibited within itself. That is, it ’folds up’
itself when there are two segments in the RNA strand that are complementary or
close to complementary. This characteristic is very important because it gives the
RNA shape, which is crucial to its functionality. There are actually different types
of RNAs, for example, the messenger RNA (mRNA), the transfer RNA (tRNA)
and the ribosomal RNA (rRNA). One major function of the RNA is to synthesize
proteins. The process is as follows. First, a segment of the DNA is ’copied’ into the
form of a RNA according to the complementary property. This process is called the
transcription. Then, the RNA serves as the template that has encoded information
carried from the DNA to produce a protein. This process is called translation.

The protein is essential for carrying out most of the mechanisms in the cell. The
regulation of these mechanisms is indeed controlled by producing different proteins
and in different quantities at different times. The protein is composed of a chain of
amino acids. There are twenty different kinds of amino acids. Each amino acid is
encoded by three RNA bases, and we call these three RNA units a codon. Since there
are four different kinds of bases in RNA (and DNA), there a total of are sixty-four
different combinations of codons. Therefore, some codons actually encode the same
amino acid. Also, notice that some codons do not encode any amino acid, which is
called the stop codon. The stop codon indicates the termination of the amino acid
chain during the process of translations. Figure I.3 shows the codon/amino acid
mapping table. Figure I.4 shows the relationships of DNAs, RNAs and proteins in
transcriptions and translations.

A gene is a segment of the DNA that encodes proteins (i.e. a DNA segment
that is transcripted to a RNA and in turn determines the protein synthesis). The
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Figure I.3. The Codon/Amino Acid Mapping Table

Figure I.4. The Relationships of DNAs, RNAs and Proteins in Transcriptions and
Translations
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genome is the whole set of DNAs in a cell. Although there are DNAs in some cell
organelles, the term genome usually refers to the set of DNAs that serves as the
genetic material.

The relationships, regulations and mechanisms between DNAs, RNAs and pro-
teins are very complex and we understand very little of it. With the basic concepts
in mind, below we will look at some of the major research areas in Bioinformat-
ics, namely the problems of sequence alignments, multiple sequence alignments and
functional site identifications.

I.2.2 Sequence Alignments

The sequence alignment is a computational model that is used to estimate the
relationship between two biological sequences, such as DNA sequences and protein
sequences. The alignment is used to model the imperfect matching between two
sequences due to some biological events, such as mutations, additions or deletions
of nucleotides. Regardless of the types of sequences to align, the basic concepts of
alignments are essentially the same. Therefore, in this section the DNA sequence
alignment is used to illustrate the idea.

Given two DNA sequences s1 and s2 {A, T, G, C}*, where * represents the
kleene star, we want to extend them into s′1 and s′2 by inserting a special symbol
’ ’, such that and have the same length. The special symbol ’ ’ is used to represent
an imaginary base that is missing from the sequence (or is added to the other
sequence) due to a biological event. Therefore, our task is to find a pair of s′1 and
s′2 that matches the best. That is let,

s1 = AGTTGCA and s2 = GTGCGA, then s′1 and s′2 can be:

s′1 = A G T T G C A
s′2 = G T G C G A

Once we decided what s′1 and s′2 are, we can then evaluate how much they are
alike. We first line up s′1 and s′2. Then, we reward each position that has a matched
base pair and penalize each position that has a mismatched base pair. We assign
a +1 score for a matched base pairs and a −1 score for a mismatched base pairs.
From the above alignment of s1 and s2, there are five matched base pairs and three
mismatched base pairs. Therefore, it has an alignment score of 5−3 = 2. Note that
we do not want to have any position that has ’ ’ on both s′1 and s′2 because it is
biologically uninformative. Therefore, we could assign a negative infinity score for
the position that has a ’ ’ pair. As a result, the higher the alignment score is, the
more s′1 and s′2 are alike.

In reality, the scoring scheme of matched and mismatched base pair is not that
simple. Often, the scoring is based on the statistical observation of how likely it
is for a certain base to undergo biological events. For computational purpose, we
assume that there is a scoring function f(a, b), where a and b are either a base in
{A, T, G, C} or ’ ’, that defines the score of a position of s′1 and s′2. Therefore, the
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alignment score of a pair of s1’ and s2’ can be defined as
∑l

i=1 f(s′1i, s
′
2i), where l

is the length of s′1 (and s′2), and s′1i is the symbol at position i of s′1 (similarly for
s′2i). As a result, we can describe the sequence alignment problem as follows. Given
two sequences s1 and s2, find a pair of s′1 and s′2 that has the maximum alignment
score.

The sequence alignment problem can be solved in O(mn) time, where m and n
are the length of s1 and s2 respectively. The O(mn) time algorithm uses a dynamic
programming to find the optimal alignment. We should clarify that the way we
define the alignment score is just one of the many ways to do that. In fact, there
are different models to evaluate the alignment score. For example, one idea is that
two contiguous ’ ’ should not be penalized the same as two separate ’ ’. Therefore,
the concept of gap penalty was introduced.

I.2.3 Multiple Sequence Alignments

Sometimes, we want to investigate the relationships between a group of sequences.
For example, a protein family is a group of proteins that are similar to each other.
Moreover, a consensus sequence is a sequence that represents the motif of a protein
family. The multiple sequence alignment can be used to extract the consensus
sequence of a protein family. The concept of multiple sequence alignment is similar to
that of the sequence alignment. Given a group of sequences s1, s2, . . . , sk. We want
to find a set of s′1, s′2, . . . , s′k (all with equal length), such that

∑k
i=1

∑k
j=1 A(s′i, s

′
j)

is maximized, where A(s′i, s′j) is the maximum alignment score of s′i and s′j.
Although the multiple sequence alignment problem is defined similarly to the se-

quence alignment problem, the multiple sequence is in fact an NP-complete problem.
Therefore, heuristic approaches are often used to solve this problem.

I.2.4 Functional Site Identifications

A site is a short segment of a DNA sequence that has a special function, for example,
a starting site of transcription and a gene regulation region (called promoter). Often,
we might know some instances of a site, and from this information, we want to
identify whether a given short segment is possibly an instance of this site. For
example, Table I.1 below are different putative promoter sequences preceding the
messenger start point.

With the set of known instances, now we can create a profile for this site. We
first create a 4 by l table T , where l is the length of this site. Each row in this table
is labeled by a base and each column is labeled by a position of this site. In addition,
an entry T [b, i] is the number of occurrences of base b at position i. Therefore, for
our example, we obtain Table I.2 below.

Sometimes, it is more convenient to calculate in terms of probability instead of
number of occurrences. Therefore, if we translate the table values into a probability
(that is, divide the value by the total occurrences), we have a probability table T ′.
Table I.3 below is the table T ′ for our example.
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Table I.1. Putative Promoter Sequences Preceding the Messenger Start Point
GCATATAAAGT mouse βmaj globin
GGGCATAAAAC rabbit β globin
AGTTATATTAT mouse λI Ig
GACTATAAAGC rat insulin I & II
GGCTATAAAAG adenovirus late
GGCTATATATT chicken ovalbumin
TTGTATATATT chicken ovomucoid
GTGTATAAAAA S. purpuratus H2B
CAGTATAAAAT B. mori silk fibroin

Table I.2. Number of Occurrences of Bases at each Position
1 2 3 4 5 6 7 8 9 10 11

A 1 2 1 0 9 0 9 6 8 5 1
T 1 2 1 8 0 9 0 3 1 2 5
G 6 4 4 0 0 0 0 0 0 2 2
C 1 1 3 1 0 0 0 0 0 0 1

Table I.3. Probability of Occurrences of Bases at each Position
1 2 3 4 5 6 7 8 9 10 11

A 0.11 0.22 0.11 0 1 0 1 0.67 0.89 0.56 0.11
T 0.11 0.22 0.11 0.89 0 1 0 0.33 0.11 0.22 0.56
G 0.67 0.44 0.44 0 0 0 0 0 0 0.22 0.22
C 0.11 0.11 0.33 0.11 0 0 0 0 0 0 0.11
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Now we can test an unknown short sequence against the profile (represented
in T ′) for this site. For example, given an unknown short sequence s = GGC-
TATAAAAG, the probability that s is an instance of the putative promoter is:

(0.67)(0.44)(0.33)(0.89)(1)(1)(1)(0.67)(0.89)(0.56)(0.22) = 0.0064.

It is easy to observe that the probability of the unknown instance will be small when
the site is long. In order to normalize the measure, we can calculate the maximum
(max) and the minimum (min) probability of an unknown short sequence. For
example,

max = (0.67)(0.44)(0.44)(0.89)(1)(1)(1)(0.67)(0.89)(0.56)(0.56) = 0.022, and

min = (0.11)(0.11)(0.11)(0)(0)(0)(0)(0)(0)(0)(0.11) = 0.

Therefore, the normalized score is:

(0.0064 − min)/(max − min) = (0.0064 − 0)/(0.022 − 0) = 0.29.

Also, notice that this method does not tell us whether 0.29 is high or low. There-
fore, more statistical techniques are needed to solve this problem, such as using the
concept of expected value.

I.2.5 Evolutionary Computing Applications in Bioinformatics

Many EC solutions have been introduced to solve problems in Bioinformatics. For
example, Chellapilla and Fogel [8] proposed an evolutionary programming approach
to the multiple sequence alignment problem (see multiple sequence alignment above).
Later, Thomsen and his colleagues [28] extended the approach by using Clustal
alignment to optimize the initial population. Platt and Dix [24] employed genetic
algorithm to construct the restriction map; that is the map that indicates the relative
positions of different genes on a DNA. Ando and Iba [1] used genetic algorithm
to infer the gene regulatory model. Indeed, EC has also applied in many other
problems such as RNA structure predictions [26], DNA motif discoveries [21], protein
classifications [9] and so forth [12, 19, 20]. This chapter explains two EC applications
in specific. The first case study uses EC to estimate the genome reversal distance for
un-oriented genomes [2]. The second case study uses EC to find a largest compatible
subset from phylogenetic data [3].

I.3 Genome Reversal Distance Estimation (case study 1)

I.3.1 Introduction

The mitochondria is a cell organelle that releases energy for the rest of the cell to
consume. This organelle in fact contains a small set of DNAs for its own purpose
(note that it is not the primary genetic material). In the late 1980s, Jeffrey Palmer
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Figure I.5. The Estimated Transformation from Tobacco to Lobelia fervens by
Reversals

and his colleagues discovered a gene shuffling pattern among different mitochondria
genomes. This pattern is now known as the genome rearrangement.

The genome rearrangement describes a mechanism in which the genes order in
the mitochondrial genome is constantly under rearrangement. Therefore, if we can
estimate the rearrangement distance between two genomes, we can estimate the
relationship between them. The reversal is the most commonly seen mechanism
of the genome rearrangement. Figure I.5 shows the estimated transformation from
Tobacco to Lobelia fervens by reversals. Due to this discovery, two mathematical
models were proposed, signed permutations and unsigned permutations [5, 6, 23].
For unsigned permutations, a genome is modeled as a permutation π with an order
n (i.e. a permutation of {1, 2, . . . , n}), where n is the number of gene blocks in the
genome. Let the permutation π = π[1] π[2] . . .π[n], the reversal operation ρ(i, j)
rearrange π into π[1] . . . π[i−1] π[j−1] . . .π[i] π[j] . . .π[n]. For a signed permutation
π′, each π′[k] has either a positive or a negative sign. Each reversal operation ρ(i, j)
not only rearranges π′ but also negates the sign of π′[k] for i ≤ k < j. The problem
of estimating reversal distance between two genomes is formulated as sorting the
permutation by reversal operations. That is, given π (or π′), we want to find a
sorting sequence that uses the minimum number of reversal to sort π (or π′) into
the identity permutation (i.e. the permutation, 1 2 . . . n for unsigned permutations,
and +1 +2 . . .+n for signed permutations). We called the minimum number of
reversals the reversal distance, denoted by d(π) (or d(π′)). Figure I.6 provides an
example of both the unsigned and the signed permutation and their sorting paths.

The problem of sorting signed permutations can be solved in O(n2) time [18].
Moreover, the problem of finding the reversal distance of a signed permutation can
be solved in O(n) time [4]. However, both sorting and finding the reversal distance
of an unsigned permutation have been proven to be NP-hard [7]. Therefore, the EC
approach can be used to search for the near-optimal solution.
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Figure I.6. An Example of the Unsigned and the Signed Permutation and their
Sorting Paths

The EC approach requires an effective representation. A näıve representation
may have a huge searching space, yet encounter the problem of invalid solutions.
Fortunately, our knowledge of signed permutations can in fact provide us an effective
EC representation for unsigned permutations. Below, we look at some background
on unsigned and signed permutations.

I.3.2 The Breakpoint Graph

An unsigned permutation can be modeled by a breakpoint graph. For each gene
(a number in the permutation), we create a node. The idea of the breakpoint
graph is to mark the desired and realistic relationship between these nodes in the
permutation. For each pair of the nodes, we draw a black edge between them if they
are adjacent in the permutation, and we draw a red edge between them if they are
adjacent in the identity permutation. In order to model the orientation, we expand
the unsigned permutation to have a zero at the front and a n+1 at the end. An
example is shown in Figure I.7. It has been shown that given a cycle decomposition
of the breakpoint graph, any reversal can at most change the number of cycles
by one. Besides, it has also been shown that given a cycle decomposition of the
breakpoint graph, the corresponding shortest sorting sequence can then be found
in polynomial time. Thus, the key problem is to find a cycle decomposition that
provides the shortest sorting sequence for the unsigned permutation. However, the
problem of finding an optimal cycle decomposition is NP-hard.

On the other hand, sorting signed permutations can be solved easily by using
the breakpoint graph. First we create the breakpoint graph as above. Then for
each gene node i, we split it into two nodes 2i-1 and 2i, with ascending order if i
is positive, descending order otherwise. Also, note that node 0 and n+1 (the nodes
we artificially added) are replaced by node 0 and 2n+1 respectively. An example is
shown in Figure I.8. The advantage is that now each node has exactly one red edge
and one black edge associated with it. Because there is only one cycle decomposition
of this breakpoint graph, the problem can now be solved in polynomial time. Many
algorithms have been proposed to find the sorting sequence. There is an O(n2) time
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Figure I.7. The Breakpoint Graph for the Unsigned Permutation 4 1 3 2

Figure I.8. The Breakpoint Graph for the Signed Permutation +4 -1 +3 -2

algorithm that finds the shortest sorting sequence. In addition, there is an O(n)
time algorithm that finds the reversal distance.

I.3.3 The Evolutionary Computing Solution

The idea of the EC approach [2] is to view all the possible cycle decomposition
of the unsigned permutation as the signed permutations that have the same gene
order. Except the node 0 and n+1, every node in the breakpoint graph has degree
2 for red edges and also for black edges. So, a cycle decomposition is used to define
the (color) alternating paths. However, there is a corresponding signed permutation
that actually defines the same alternating paths. Therefore, we can now turn our
focus on the signed permutation instead of the cycle decomposition. We define the
set Signed(π) be the set of signed permutations that have the same gene order as
π. For example, when π is 2 1, then Signed(π) is {-2 -1, -2 +1, +2 -1, +2 +1}.
Thus, the size of Signed(π) is 2n. Furthermore, the following two observations are
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required for our EC approach.

Observation 1 Each π′ ∈ Signed(π) can deduce a valid sorting sequence for π.
Proof:

Let sorting sequence ρ sort π′ into identity (i.e. π′
ρ = id). Because | π′[i] | =

π[i], then π′
ρ[i] = πρ[i], for all i. Thus, ρ can also sort π (i.e. πρ = id).

Observation 2 There exists a π∗ ∈ Signed(π) that deduces an optimal sorting
sequence for π.
Proof:

Let ρ be a sorting sequence for π that uses minimum number of reversals. For
each π[k], let count[k] be the number of times that π[k] is included in reversals of ρ,
i.e. ρ(i, j) i ≤ k < j. Then π∗ is as follows. π∗[k] has a positive sign if count[k] is
even, otherwise it has a negative sign. Because | π′[i] | = π[i], πρ[i] = | π′

ρ[i] |, for
all i. In addition, all π′

ρ[i], must be positive. Therefore, ρ can also sort π∗ and the
reversal distance for π∗ is equal to the reversal distance for π.

From the two observations, we can see that the problem can be solved in O(2nn)
time. That is to find the reversal distance for all 2n corresponding π′. Let π∗ be the
π′ that has the minimum reversal distance. Then the sorting sequence of π is the
sorting sequence of π∗. However, it is not feasible to go through all 2n π′. Therefore,
genetic algorithms can be used to find π∗. We can expect the genetic algorithm to
find a π′ with low reversal distance. In fact, the result is an upper bound for the
reversal distance of π.

The chromosome of the genetic algorithm is a binary string with length n, which
represents the signs of the signed permutation. From observation 1, we know that
any instance of the chromosome gives a valid solution. Therefore, it allows us to use
generic bitwise crossover and mutation operations. Due to the bitwise chromosome
representation and simple genetic operations, least computation is required which
results in fast generations. The fitness can be some functions of d(π′), such as 1

d(π′) .
Note that this fitness function requires O(n) time. Figure I.9 gives a comparison
between the EC approach and a heuristic approach [10]. In this experiment, single
bit mutation and single point crossover operations were used.

Often, some information about the solution allows us to apply another heuristic
or even prune out some search space without risking the loss of the global optimal.
In fact, it has been proven that there exists a sorting sequence that does not break
any sorted substring with length longer than 2. (Note that this observation is for
substring straightly greater than 2. For example, when we optimally sort the per-
mutation 3 4 1 2, one of the sorted 2-lengthed substrings (i.e. 3 4 or 1 2) has to
be broken.) Therefore, for any long sorted substring, we can compress it into one
number and according to whether it is ascendingly sorted or descendingly sorted,
we can remove such bit from the chromosome and always assign it a positive or
negative sign. Furthermore, there are different error bounded heuristics proposed.
We can use these heuristic algorithms to enhance the quality of the initial popula-
tion. For example, the idea of the 3

2 -approximation algorithm is to maximize the
number of 2-lengthed (color) alternating cycles. Therefore, we can adapt the idea
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Figure I.9. A Comparison of the Evolutionary Approach and a 3
2 -approximation

Approach

by initiating the population of different signed permutations that maximize some
r-length alternating cycles (e.g. r=1, 2 or 3).

I.3.4 Open Problems

Sorting permutations by reversals is only one of the many mathematical models
of the genome rearrangement. In fact, this model is the simplest one. Below we
introduce two somewhat more realistic models of the genome arrangement problem.
Both problems are very complex in nature and have no known efficient algorithm in
general thus far.

Sorting Words by Reversals. Not all genes are uniquely existing in the genome.
Sometimes, copies of the genes can be found in different locations in the genome.
Sorting words by reversals is the mathematical model to address this reality. A word
w is a string in Gene*, where Gene = {1, 2, . . . , n}. Without loss of generality, we
assume that all elements in Gene are exhibited in w. This model is similar to the
sorting permutations model, only that some genes can be duplicated. The problem
is to find a sorting path using the minimum number of reversals to sort a genome π
to a genome θ, where π, θ ∈ Gene*.

Sorting A permutations by Reversals. Another variation is sorting A per-
mutations by reversals. This model addresses the fact that there are special sites
for rearrangements. Rearrangements only occur when the beginning and the end
of the subsequence allow binding for the responsible enzymes. Therefore, we now
have special symbols (sites) from the set A = {a, b, c, . . .} which indicates different
sites of the genes. For example, 3aa1baa4a52b is an A-permutation of 31452 with
A = {a, b}. The reversal is valid only between two identical sites (i.e. a−a or b−b).
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The problem is to first identify whether the A-permutation is sortable, then to find
a minimum sorting path.

I.4 The Largest Compatible Subset Problem for Phylogenetic

Data (case study 2)

I.4.1 Introduction

The theory of evolution hypothezes that all organisms evolved from a single source,
a simple organism. Therefore, under this hypothesis there is a relationship between
every two species. One way to interpret this relationship is to look at the phenotypes
(the features that can be observed) of the species. We call them the characters of
the species. Furthermore, we expect that the more characters two species share,
the closer relationship they have. The study of phylogenetics (phylogeny) is to
understand these evolutionary relationships between the species. Different models
have been proposed to model the evolutionary relationships between the species from
different types of experimental data [16]. The perfect phylogeny [15] is a tree-based
model that uses binary characters to infer phylogeny. Due to the noisy nature of
the experimental data, conflicts are often found between subsets of the experimental
data. Therefore, it is important to extract the motif from the imperfect data. The
largest compatible subset problem is that given a set of experimental data, we want
to discard the minimum such that the remaining are compatible.

In the case of the perfect phylogeny, the conflicts between subsets of data come
pairwise [13, 14]. In other words, the compatibility between subset A and subset B
are independent of other subsets. Moreover, if A is incompatible with B, B is also
incompatible with A. From this condition, we model the incompatibility between
subsets of data by a graph, where each vertex represents a disjointed data subset,
and an edge (u, v) indicates that vertex u and v are incompatible.

In the context of a graph G = (V,E), where V is the set of vertices and E is the
set of edges, the largest compatible subset problem [11] is to find a subset U ′ ⊆ V ,
such that (u, v) /∈ E, ∀u, v ∈ U ′ and | U ′ | is maximum. Equivalently, we can find
a subset V ′ ⊆ V such that ∀(u, v) ∈ E, then either u ∈ V ′ or v ∈ V ′ (or both) and
| V ′ | is minimum. In fact, this problem has ready been studied in graph theory and
is called the vertex cover problem [22]. However, the vertex cover problem has been
proven to be NP-complete [17]. Therefore, the EC approach can be used to search
for the near-optimal solution.

Again, a well-designed representation is critical for the EC approach. We can

encode the chromosome to be a possible V ′. But, there are
∑n

i=1

(
n
i

)
possible

V ′. Besides, some V ′ are in fact invalid. Here we would introduce an EC approach
[3] that uses some knowledge on the vertex cover for special graphs to reduce the
complexity. We also need a scheme to avoid invalid chromosomes. First, we present
an overview on the perfect phylogeny and the vertex cover problem.
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Figure I.10. An Example of a Matrix and its Perfect Phylogenetic Tree

I.4.2 The Perfect Phylogeny

The perfect phylogeny is a phylogenetic model that uses binary characters. An m
by n 0-1 matrix M records the exhibition of the n characters in the m species. That
is M [i, j] = 1 if and only if species i exhibits character j, and zero otherwise. The
definition of a perfect phylogenetic tree for matrix M is as follows. A rooted tree T
is a perfect phylogenetic tree of M if it satisfies:

1. T has exactly m leaves;
2. each of the m species labels exactly one leaf of T ;
3. each of the n characters labels exactly one edge of T ; and
4. for any leaf l, the unique path from the root node to l contains labels that

specify all the characters that l (its corresponding species) has.

Figure I.10 shows an example of a matrix M and its perfect phylogenetic tree
T . Not all matrices are perfect phylogeny. For any two characters ci and cj, let oi

and oj be the species who exhibit ci and cj respectively. The matrix M is a perfect
phylogeny if and only if oi and oj are either disjoint or one contains the other, for
every i, j. In other words, character ci and cj are incompatible when oi and oj are
overlapped. The incompatibility between the characters in M can be visualized by
a conflict graph, where each vertex represents a character and each edge represents
a conflict. Figure I.11 shows an example of M that is not a perfect phylogeny and
its conflict graph.

In practice, most experimental data is not a perfect phylogeny. Therefore, we
want to extract a matrix M ′ from M , such that M ′ is a perfect phylogeny. The
largest compatible subset problem for the perfect phylogeny is that given an m by
n matrix M , find an m by n′ matrix M ′ by removing columns from M , such that n′

is maximum and M ′ is a perfect phylogeny. In the context of the conflict graph, we
want to find the largest subset of vertices U ′ to keep, such that the resulting graph
is edge free.

I.4.3 The Vertex Cover Problem

The largest compatible subset problem actually has already been studied in the
form of the vertex cover problem in the graph theory. A vertex cover of a graph
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Figure I.11. An Example of a Matrix that is not Perfect Phylogeny and its Conflict
Graph

G = (V,E) is a set V ′ ⊆ V such that if (u, v) is an edge of G, then either u ∈ V ′ or
v ∈ V ′ (or both). The vertex cover problem is to find a vertex cover that minimize
| V ′ |.

The largest compatible subset problem and the vertex cover problem are actually
dual. The largest compatible subset problem is to find the largest subset U ′ to keep,
such that the remaining graph is edge free, while the vertex cover problem is to find
the smallest subset V ′ that covers all edges. That is U ′ = V − V ′.

The vertex cover problem has been proven to be NP-complete. Therefore, there
is no efficient algorithm to solve it (and the largest compatible subset problem too).
As a result, different heuristic algorithms have been proposed to find a near-optimal
solution for the vertex cover problem. For example, Algorithm I.1 will produce a
vertex cover that is at most twice the size of the optimal vertex cover.

Algorithm I.1 A 2-approximation Algorithm for the Vertex Cover Problem
Algorithm 1 [G = (V,E)]
{

V ′ = 0
while (E is not empty)
{

Pick an arbitrary edge (u, v) ∈ E
V ′ = V ′ ∈ u, v
Remove (u, v) and all edges incident on u or v from E

}
return V ′

}

Although there is no efficient algorithm to solve the vertex cover problem in gen-
eral, the optimal solution can easily be found if the graph is composed of disjointed
simple cycles and trees. The optimal vertex cover for a graph that is a simple cycle
can be obtained by taking alternating vertices on the cycle starting from an arbi-
trary vertex. The optimal vertex cover for a graph that is a tree can be found by
Algorithm I.2.
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Algorithm I.2 A Linear-time Algorithm to find the Optimal Vertex Cover for a
Tree.
Algorithm 2 [G = (V,E)]
{

V ′ = 0
while (E is not empty)
{

Pick an arbitrary leaf node u in G
Let v be the parent node of u
V ′ = V ′ ∪ {v}
Removing v and all edges incident on v from G

}
return V ′

}

I.4.4 The Evolutionary Computing Solution

The idea of the EC approach is to encode the vertex cover by a binary string,
where each bit corresponds to a vertex in the graph. When a vertex u has a 1-bit,
it represents including u in V ′ and (conceptually) excluding u from V ′ otherwise.
However, the optimal presence can actually be found for the rest of the vertices once
the presence of some ’critical vertices’ is determined. Therefore, our representation
of the chromosome is only composed of the set of critical vertices. We define the set
of critical vertices to be the set C ⊆ V , where {u ∈ V | u has the edge degree larger
than two and u belongs to a cycle in G}. The following lemma shows the definition
of critical vertices is sufficient to decompose an arbitrary graph into a graph that
composes of only simple cycles or/and trees.

Lemma 1 The set of non-critical vertices spans a graph G′ that is composed of only
simple cycles or/and trees.
Proof:

If there exist a component in G′ that is not a simple cycle nor a tree, then there
must exist a vertex u that belongs to a cycle and has degree larger than two. But the
set of non-critical vertices (V −C) is the set of vertices that have the degree less than
three or it does not belong to any cycle in G, thus it contradicts the assumption.

Once the presence of the critical vertices is determined, the rest of the vertices can
easily be determined by the methods discussed in the last section. However, some
critical vertices can in fact be adjacent to each other. Thus, the effect of a vertex
u with a 0-bit does not immediately exclude u from V ′, but it does immediately
include all adjacent vertices of u from V ′. Algorithm I.3 shows how the vertex cover
is interpreted from a chromosome.

Once again, the EC representation and interpretation of the solution provides
a better search space because it reduces the size of the search space and it ensures
that all instances are valid solutions. Generic genetic operators can then be used.
The fitness function can be some functions of | V ′ |, such as 1

|V ′| . Figure I.12 gives a
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Algorithm I.3 An Algorithm to construct the Vertex Cover from a Chromosome.
Algorithm 3 [G = (V,E)]
{

V ′ = V
for each critical vertex u
{

if (u has 1-bit)
remove u and all edges incident on u from G

else // u has 0-bit
remove all edges and vertices incident on u from G

}
Use Algorithm 2 to find vertex cover on tree components and
remove them from G
Remove alternating vertices on simple cycles from G,
starting from an arbitrary vertex
V ′ = V ′ − V
return V ′

}

comparison between the EC approach and a heuristic approach. In this experiment,
again single bit mutation and single point crossover operations were used.

The concept of critical vertices is the key to reduce the problem size. Figure I.13
shows the average number of critical vertices in different graph sizes. We can see
that the concept of critical vertices reduces the problem size to about half, that is
(
√

2
2 )n times of the search space.

I.4.5 Open Problems

Although the largest compatible subset problem for the perfect phylogeny demon-
strates the fundamental concept of the compatibility problem, other variations of
the models require some adaptations of the representations. Below we look at two
similar compatibility problems.

Weighted Data. Sometimes, data subsets are not equally important. Biology
experts might weight data subsets according to their source and characteristics.
Therefore, we assign a weight for each vertex in the graph. Then, the problem is to
find a vertex cover V ′ that minimizes the total weight, i.e.

∑
v∈V ′ weight(v). Notice

that this problem is inherently an NP problem, because its special case, when all
weights are equal to one, is indeed the vertex cover problem.

Non-pairwise Conflicts. Sometimes, the conflicts are not in pairwise form. There-
fore, we need to extend the graph definition to the hypergraph. A hypergraph is
a graph that its edges can have more than two end-points. Therefore, a conflict
exists between a group of species can be represented by an edge in the hypergraph.
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Figure I.12. A Comparison of the Evolutionary Approach and a 2-approximation
Approach

Figure I.13. The Average Number of Critical Vertices for Various Graph Size
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Furthermore, by removing any vertex of this group, the conflict can be resolved.
Similarly, this problem is inherently an NP problem because when all edges have
exactly two end-points, it is same as the vertex cover problem.

I.5 Summary

This chapter introduced Evolutionary Computing applications in Bioinformatics.
We reviewed some major events and explained some key concepts of Bioinformatics.
We also gave an overview of some of the important problems. Furthermore, two case
studies were presented in detail with the problem’s background, the EC solution,
the experimental results and the open problems.
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