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Abstract 

 
Web caching is a technology for improving network 

traffic on the internet. It is a temporary storage of Web 
objects (such as HTML documents) for later retrieval. 
There are three significant advantages to Web 
caching; reduced bandwidth consumption, reduced 
server load, and reduced latency. These rewards have 
made the Web less expensive with better performance. 
In this paper, an Artificial Intelligence (AI) approach 
is introduced for Web caching to determine the type of 
Web request, either to cache or not, and to optimize 
the performance on Web cache. Two methods are 
employed in this study; Artificial Neural Network 
(ANN), and Particle Swarm Optimization (PSO). The 
experimental results have revealed that some 
improvements have been accomplished compared to 
the existing technique in terms of Web cache size.  

   
1. Introduction 
 

Caching operation can be executed at the client 
application, and generally it is embedded in most Web 
browsers. There are a number of products that extend 
or replace the embedded caches with systems that 
contain larger storage, more features, or better 
performance. In any cases, these systems only cache 
net objects from many servers for a single user.  

Caching can also be operated between the client and 
the server as a part of proxy cache, which is often 
located close to network gateways to decrease the 
bandwidth connections. These systems can serve many 
users (clients) with cached objects from many servers. 
In fact, the usefulness of web caching (reportedly up to 

80% for some installations) is in caching objects 
requested by one client for later retrieval by another 
client. Even for better performance, many proxy 
caches are part of cache hierarchies; a cache can appeal 
neighboring caches for a requested document to lessen 
the need for direct fetching.  

Furthermore, caches can be situated directly in front 
of a particular server, to reduce the number of requests 
that the server must handle. Most proxy caches can be 
used in this fashion with different names; reverse 
cache, inverse cache, or sometimes httpd accelerator, 
to replicate the fact that it caches objects for many 
clients but normally from one server [1][8]. 

The rest of the paper is organized as follows:  
Section 2 describes some fundamentals of Artificial 
Neural Network (ANN), followed by Particle Swarm 
Optimization (PSO) in Section 3. Section 4 discusses 
on Intelligent Web caching, while Section 5 illustrates 
the performance evaluation of both ANN and PSO. 
Finally, Section 6 concludes the article. 

  
2. Artificial Neural Network (ANN) 
 

ANN is comprised of architecture and a learning 
algorithm. The architecture is the arrangement of the 
neurons within the network, i.e. how they are linked 
together. The learning algorithm is the program that 
each neuron runs every time the network is executed. 

Most artificial neurons are a simple summing 
program by taking the sum of their input activations. 
Subsequently, the output is activated and it is 
depended on their internal state. The internal state 
changes in response to input activations over time, as 
well as output activations. The supervised learning 



paradigm dictates that a network must be informed 
whether or not it has produced an acceptable response. 
ANN is judged on its ability to successfully produce a 
correct output given a certain set of inputs. An 
unsuccessful attempt induces a change in the neurons 
internal states. 

Back-propagation (BP) is the mathematical 
technique for calculating errors in a complex 
mathematical system [9], such as ANN. It is one of the 
several types of gradient descent algorithms, which are 
inversely similar to more traditional AI approaches 
such as gradient assent algorithms. Such algorithms 
map the function onto a three-dimensional surface, 
with low land valleys and up land hills. Depending on 
the problem, the lower the point on the landscape the 
better the output of the function (this situation is 
reversed for gradient assent algorithms). 

 
3. Particle Swarm Optimization (PSO)  
 

PSO is an attractive approach due to its easiness in 
dealing with very few parameters for weight 
adjustment. The first application represents an 
approach that can be used for many applications, i.e., 
evolving ANN [3][9]. PSO is being used to optimize 
not only the network weights, but also the network 
structure. The method is straightforward and efficient, 
and generally, it is widely implemented with traditional 
ANN training algorithms. 

PSO, similar to other evolutionary computation 
algorithms, can be applied to solve most optimization 
problems and problems that can be converted to 
optimization problems. It is a population-based search 
algorithm derived from the simulation of the social 
behavior of birds within a flock. The initial intent of 
the particle swarm concept was to graphically simulate 
the graceful and unpredictable choreography of a bird 
flock [2]. The aim is to discover the patterns that 
govern the ability of birds to fly synchronously, and to 
suddenly change direction with a regrouping in an 
optimal formation. From the initial objective, the 
concept evolved into a simple and efficient 
optimization algorithm. 

A swarm consists of a set of particles, where each 
particle represents a potential solution. Subsequently, 
the particles are flown through the hyperspace, and the 
position of each particle is changed according to its 
own experience and its neighbors.  
Let ( )txi denotes the position of particle iP  in 
hyperspace, at time step t. Subsequently, the position 
of iP  is changed by adding a velocity  ( )tvi  to the 
current position. 

 

( ) ( ) ( )= − +1
i i i
x t x t v t

 
 
The velocity vector drives the optimization process 

and reflects the social exchange information. 
Moreover, two main algorithms regularly used in PSO 
are a local best algorithm (lbest) and a global best 
algorithm (gbest).  In the lbest algorithm, each particle 
moves towards its previous best position, and also 
towards the best particle in its restricted neighborhood 
and thus maintains multiple attractors. The gbest 
algorithm maintains only a single best solution, and 
each particle moves towards its previous best position 
and towards the best particle in the whole swarm. 
Eventually all particles will converge to this position.  
 
4. Intelligent Web caching 
 

Hammami [4] was the pioneer in investigating the 
possibility of using ANN in placing a new cache block 
placement. In his work, he adapted the ANN in block 
placement strategy in computer cache memory widely 
known as Random Access Memory (RAM). Though in 
1990’s the setback to this approach is the 
computational burden on the CPU processing for the 
ANN learning, his study has marked a new era of   
caching systems. His promising results on a set of 
benchmark data has shown and sparked the 
exploitation of ANN in solving caching problems. 

Implementing ANN is an added progress towards 
improving the performance of Web caching. A 
significant performance improvement in employing 
ANN in computer cache memory for data clustering 
shows that further exploration of executing this 
technique in Web caching is possible. 

The relative performance of ANN in various 
applications is assorted towards different applications   
(e.g.: performance analysis, prediction, and data 
clustering). Performance of various methods and 
policies in Web caching should be visible once 
exploring the capabilities of ANN in Web caching. 
Selecting the best value for each user predefined 
values such as learning rate and error tolerance is 
needed in ANN for better results. These selections will 
affect the forecasting ability of the network in Web 
caching.  

By employing BP and PSO algorithm for the 
caching scheme analysis in selecting cache objects, a 
chosen input need to be set up to visualize and handle 
the environment of the Web caching system. In 
selecting the best input variables, critical components 
and variables of affected server, contemporary caching 



approaches, and end users’ are desirable to be 
analyzed. The end user perspective is particularly 
important for online applications while a perspective 
from a single monitoring server is adequate for most 
infrastructure applications. 
 
5. Performance evaluation 
 

Several steps are involved to conduct the 
performance and evaluation of BP algorithm and PSO 
in Web caching. Figure 1 depicts the workflow of the 
proposed intelligent Web caching.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 1. Workflow of intelligent Web caching 

 
The number of ANN input nodes correspond to the 

number of variables in the input vector used to analyze 
the system performance. In this paper, the number of 
inputs is based on three attributes proposed by 
Mohamed [11]. As well, the number of input nodes is 
probably the most critical decision variables since it 
contains the important information about the complex 
autocorrelation structure in web application 
performance. 

The hidden layer and nodes play crucial roles in 
mapping the precise weight for the network output. It 
is the role of the hidden nodes in the hidden layer that 

allow ANN to identify the feature, to capture the 
pattern in the web performance data, and to perform 
complex nonlinear mapping between input and output 
variables.   

In this paper, the number of hidden nodes is 
determined by using 2n+1 [10]. The number of output 
nodes is relatively easy to specify as it is directly 
related to the undertaken problem. In this study, only 
one output node is needed; about the decision to cache 
or not to cache the data. BP training parameters for the 
Web caching are set as follow: 

Learning rate = 0.7 
Total error = 0.005 
Individual error = 0.005   
Number of epoch = 20  
Number of hidden layer = 1 
Number of nodes in hidden layer = 7 
Stopping condition = total error reached or maximum 
number of epoch 

For the reason a convergent process for BP is time 
consuming for this particular data and possibility of 
not converge, the number of epoch for BP are limited 
to 20 only. 

In designing the ANN for Web caching, the 
following procedures are determined: 
• The pre-processing data 
• The number of input nodes 
• The number of hidden layers and hidden nodes 
• The number of output nodes 

The selection of these parameters is basically 
problem-dependent. Although there exist many 
different approaches that can be applied, such as the 
pruning algorithm, the polynomial time algorithm, the 
canonical decomposition technique, and the network 
information criterion for finding the optimal 
architecture of ANN, these methods are usually quite 
complex in nature and are difficult to implement. 
Furthermore none of these methods can guarantee the 
optimal solution for the Web caching problems. 

The pre-processing is the key component in Web 
cache. At this stage, three attributes are proposed, 
which are based on the attributes that are widely used 
by the researchers in the area of Web performance 
analysis [5][6]. The attributes used in this study are: 

1. Time: Time is the counter that observes the time 
takes to receive a data. The time stated in seconds. 

2. Script Size: The size of the data that is fetched. 
The size is expressed in bytes and kilobytes. 

3. Numbers of Hit: Observing the number of hits per 
data. Where on each request done for a Web file, 
the Number of Hit counter for requested file will 
be increased. 

Each attribute must be multiplied with defined 
Priority Value (PV) [11] to get the total of the 
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attributes for target output generation of the network. 
An example is shown as: 

 
Expected target = (size *0.266667) + (hit *0.200000) + 

(time *0.066667)   

The total value determines the expected target for 
current data. The total value is compared to a threshold 
number, and this threshold values are dynamic. A new 
threshold calculation is proposed based on the latency 
ratio on singular hit rate data [7]. 

The threshold is calculated and updated for every 
epoch of the training. If the expected_target is smaller 
than the threshold, then the expected target would be 0, 
and becomes 1 if the expected_target is equal to the 
threshold and greater shown as given below: 
 
  
 

The network incorporates simplicity in generating 
output for the web caching to cache or not to cache. 
For each output generated from the non-training mode, 
the outputs can be illustrated by employing sigmoid 
function that bounded between 0 and 1.  For each 
output values that represent between the interval of 
[0.5,1], the data will be cached in the caching storage, 
and for each output that represent values less than 0.5 
the data will be fetched directly from the originating 
database resource in case the data is not found in the 
cache storage. PSO parameters for web caching are 
assigned as: 

Number of particle = 7 
Global acceleration constant = 1.4 
Local acceleration constant = 1.4 
Time step = 0.1 
Inertia weights = 0.729844 
Minimum error = 0.005 

In this section, we present a performance 
comparison between standard Web cache, ANN Web 
cache and PSO Web cache. The standard Web cache 
fills requests from the Web server, stores the requested 
information locally, and sends the information to the 
client. If the Web cache gets a request for the similar 
information for the next time, it simply returns the 
locally cached data instead of searching over the 
Internet. On the other hand, ANN and PSO Web cache 
request from the Web server and determine which 
request should be stored locally using AI approach. 

Figures 1a through Figure 4a depict the BP training 
process, while Figure 1b through Figure 4b show the 
PSO training process. The testing log data are from 
Mosaic clients, which were running at the Boston 
University from November 1994 to February 1995. 
Three different parameters are chosen for training; 
size, retrieval time, and hit rate. The training results 

reveal the minimum error, total training iteration, 
accuracy in training both of the approach, and total 
size in cache (refer to Figures 1a- Figure 4a and Figure 
1b- Figure 4b). The minimum error and the accuracy 
are generated by ANN and PSO during training in 
standard Web cache.  

Table 1 illustrates the results of BP network and 
PSO. The results are promising in resolving status of 
data either to cache or not. It is also stored more than 
half of the data in cache, hence improves the 
processing time of a server. The advantages of PSO are 
due to less iteration during training process and 
achieve minimum error faster compare to the BP 
network. However, the drawback of PSO is the more 
the particles are used, the higher the computational 
cost are incurred. 

Moreover, from the results (see Figure 5, 6 and 7) 
of executing each algorithm, we find the mean squared 
error and the total training iteration of BP algorithm is 
higher than PSO from November 1994 to February 
1995. Therefore, the percentage of accuracy test for 
PSO is privileged compare to BP (see Figure 7). This 
is because PSO is used to optimize the weight in ANN 
and in this case, the training process using PSO 
converge faster than BP network. It seems that this 
result indicates that PSO is preferred. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
Figure1a. BP training process for Nov-94  

 
Figure2a. BP training process for Dec-94 
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Table 1. Performance on Nov-94 until Feb-95 

 BP PSO Standard 
November 1994 

Error 0.061 0.005 - 
Total Iteration 24520 631 - 
Accuracy Test 87.68 99.18 - 
Total Cache Size (kb) 57409.67 57409.67 74859.44 

December 1994 
Error 0.042 0.005 - 
Total Iteration 63740 470 - 
Accuracy Test 91.53 98.96 - 
Total Cache Size (kb) 102398.4 102398.4 147668.7 

January 1995 
Error 0.052 0.0049 - 
Total Iteration 67980 533 - 
Accuracy Test 89.5 99.441 - 
Total Cache Size (kb) 54089.219 54091.349 74779.29 

February 1995 
Error 0.047 0.005 - 
Total Iteration 57960 488 - 
Accuracy Test 90.65 99.68944 - 
Total Cache Size (kb) 72084.8 72084.8 84963.98 

  

 
Figure4a. BP training process for Feb-95 

 
Figure 2b. PSO training process for Dec-94 

 
Figure 3b. PSO training process for Jan-95 

 
Figure 4b. PSO training process for Feb-95 

 

  

 
Figure3a. BP Training process for Jan-95 

 
Figure 1b. PSO training process for Nov-94 
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Figure 5. Mean squared error 
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Figure 6. Total training iteration 
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Figure 7. Accuracy test 

 
6. Conclusion 
 

We presented two approaches to optimize the use of 
Web caching in server. Although further extensive 
benchmarking is required, there is a strong indication 
that these approaches enhance the performance of Web 
cache.  

Direction for further research to include the 
benchmarking with log data from various web and 
proxy server, as well as different protocol also 
assigned within the training phase (ftp, gopher etc) to 
fully optimize the use of intelligent Web cache. 
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